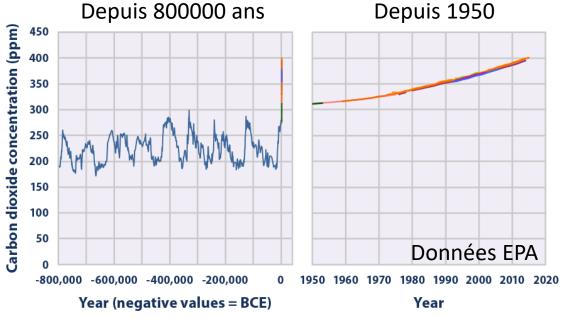


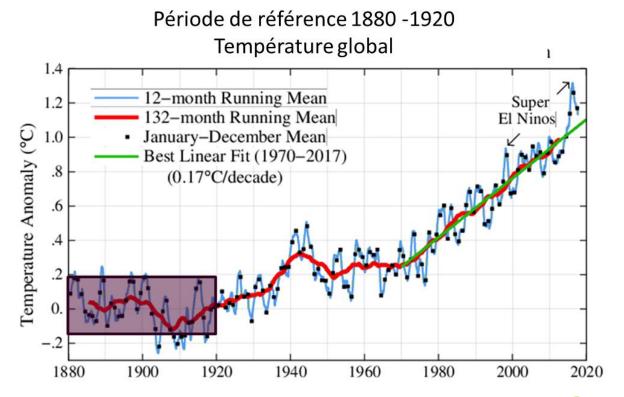

20-22 NOVEMBRE 2018

CONFÉRENCES de l'ISVV

Le climat : Évolution passée, aléas et attendus

Iñaki Garcia de Cortazar- Atauri
US Agroclim

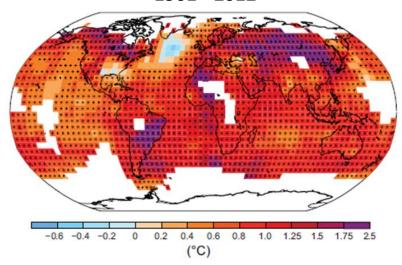

Changements au cours des dernières 150 ans

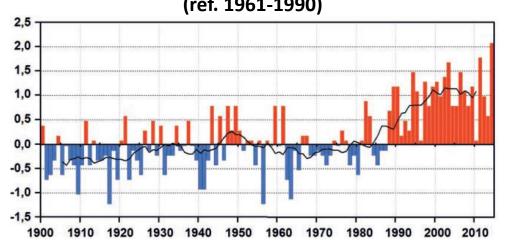


Il existe un lien direct entre l'évolution de nos émissions de Gazes à Effet de Serre, l'augmentation de leur concentration (une molécule de CO2 reste au moins 100 ans dans l'atmosphère) et le changement climatique

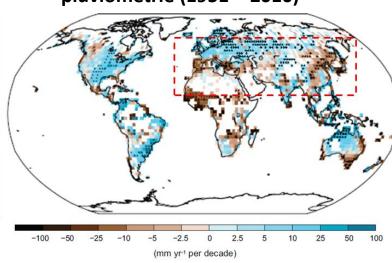
Evolution de la concentration du CO₂

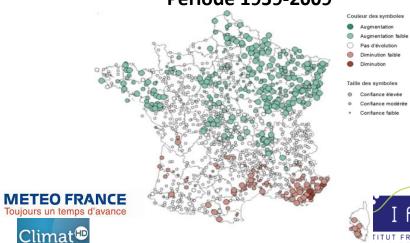
Changements Observés – Monde et France




VINITECH

*SIFEL


Distribution spatial du changement de la température 1901 - 2012


Evolution de l'anomalie de température moyenne annuelle (réf. 1961-1990)

Distribution spatial du changement de la pluviométrie (1951 – 2010)

Evolution précipitations annuelles Période 1959-2009

Changements observés – Variabilité et aléas INA

VINITECH

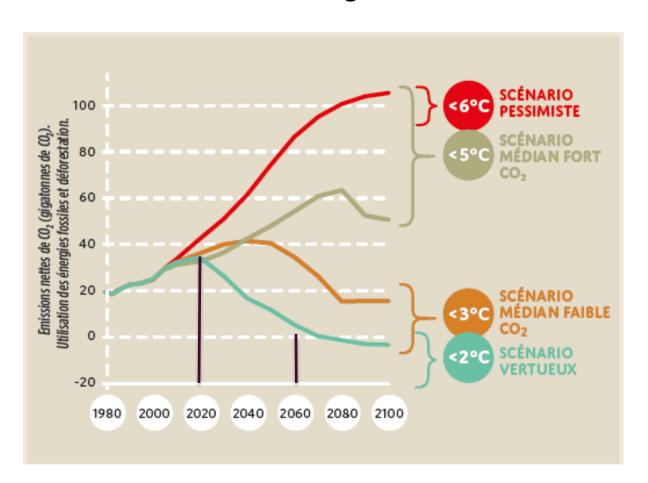
E SALON MONDIA

- Tous ces changements ne se produisent pas de la même manière dans le temps et dans l'espace
- Certaines régions se réchauffent plus vite que d'autres
- Disparition d'années TYPIQUES, mais uniquement des années ATYPIQUES...

Extrême	Années	Périodes	Impact
Canicule	2003, 2006, 2015, 2016, 2017, 2018	Fin Juin – Début Août	Maturation, arrêt physiologique
Sècheresse	2003, 2011, 2015 - 2018	Printemps, Été, Hiver	Localisé et variable Croissance, nutrition, qualité, production
Températures élevés	2007, 2011, 2015-2016, 2018	Hiver, Printemps	Précocité du développement, Hiver doux—> moins de control sur les pathogènes
Période pluvieuse	2002, 2004, 2011, 2013, 2016, 2018	Printemps, Été, automne	Floraison, Vendanges
Gel	2012, 2016, 2017	Sortie d'hiver, printemps	Mortalité de plants
Grêle	2008(3), 2009 (5), 2010(3), 2012(4), 2013(3), 2014(4), 2016(2), 2017, 2018	Printemps - Été	Localisé – destruction de plantes et production

Mora et al., 2018 (apparu ce lundi)

Augmentation de la combinaison des évènements extrêmes

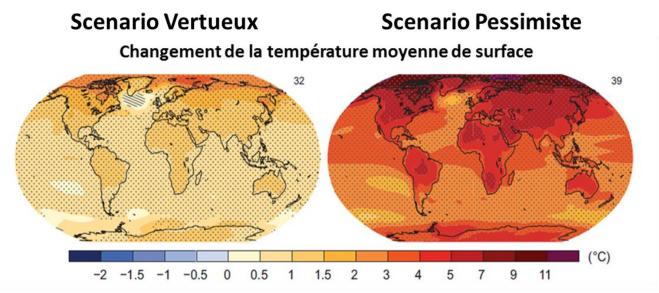

Comment ceci va évoluer dans le futur?

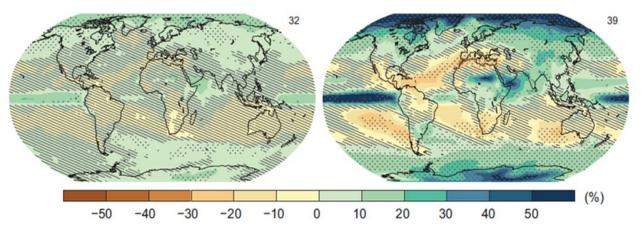
VINITECI

Il faut réduire de manière urgente nos émissions de Gaz à Effet de Serre

Pour rester en dessous de 1.5 - 2°C (objectif de la COP21) on doit commencer une diminution rapide de nos émissions qui devrait aboutir à 0 émissions en 2050 - 2060.

Cela demande un changement radical qui doit commencer au plus tard en 2020.




Ces choix vont affecter les projections futures

VINITEC

A l'horizon 2050:

- légère augmentation d'environ 0.5 –
 1°C (par rapport à aujourd'hui)
- mais on pourra s'adapter (plus ou moins selon les régions)

Au-delà 2050 et si le scenario pessimiste devient probable:

- les vignobles auront du mal à s'adapter
- une augmentation très forte des températures pendant la maturation
- une diminution de la ressource hydrique dans toutes les zones de production actuelles.

Quelques conclusions et réflexions

Déjà Observé

- Malheureusement on continue l'augmentation de la température
- Evolution de la pluviométrie aussi (augmentation significative des pluies extrêmes)
- Situations très variables selon les sites et les années
- Plusieurs situations compliqués dans la même année

Prévisions futures

- Selon les politiques globales différents scénarios possibles
- Enjeux très forts pour les prochains 3 à 5 années...

France

- Augmentation de la température avec une certaine variabilité selon modèles x scenarios → + 0.5-1°C à l'horizon 2050
- Diminution et variabilité de la pluviométrie selon scénarios modèles régions.

Les principaux impacts attendus sur la vigne

- VINITECH

 SIFEL

 LE SALON MONDIAL

 vitavinicole autoricole maraccher
- LE SALON MONDIAL vitro incole arboricole maraicher

- \checkmark + de CO₂ > favorable à la production végétale
- Phénologie : + précoce et raccourcissement du cycle, mais risque de gel au printemps
- ✓ Besoins en eau accrus > sécheresse
- ✓ Vagues de chaleur > brûlure sur les baies
- Modification de la minéralisation dans les sols
- Conséquences sur la maturation et la qualité des raisins
- ✓ Modification des interactions plante-pathogènes

Inaki Garcia de Cortazar-Atauri

inaki.garciadecortazar@inra.fr
@IGarCotAt

Merci de votre attention

