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Abstract. Soil water availability deeply affects plant physiology. In viticulture it is considered a major contrib-

utor to the “terroir” effect. The assessment of soil water in field conditions is a difficult task, especially over

large surfaces. New techniques are therefore required in order to better explore variations of soil water content

in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets

these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques

to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An ap-

plication of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the

vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil wa-

ter (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials

measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for

water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant

water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of

a major function of plant development: the capacity to extract water from the soil.

1 Introduction

In viticulture and oenology it is acknowledged that the nat-

ural environment has a major impact on the yield and vege-

tative growth of grapevines and therefore on the sensory at-

tributes of the final product. This link between the character-

istics of a wine and its origin is called the “terroir” effect (van

Leeuwen and Seguin, 2006). It has been studied on a scien-

tific basis since the 1960s (Seguin, 1969). This relationship is

not mediated through the effect of particular soil minerals or

flavour compounds, although the popular wine press often er-

roneously describes it thus (van Leeuwen and Seguin, 2006).

The terroir effect must be sought in interactions at the ecosys-

tem level. Major factors in the terroir effect are the supplies

of water and nitrogen (van Leeuwen, 2010). Water and nitro-

gen are major drivers of vine physiology at the whole-plant

level. This paper focuses on soil and vine water relationships.

Soil is not a homogeneous medium, and is therefore not

explored by roots in a homogeneous way. Hence, during

drought, soil cannot dehydrate in a homogeneous way. It

is surprising that such evidence is often neglected, and that

available soil water capacity is generally considered a soil

characteristic, independent of the plant. The highly variable

spatio-temporal distribution of wet and dry zones in soils has

profound physiological implications for plants. Indeed, while

chemical and hydraulic root signals are produced in moder-

ately dry soil regions, the part of roots in wet soil regions

ensures the supply of water and therefore transpiration and

photosynthetic activity. Partial root zone drying (PRD) is an

irrigation concept based on this knowledge (Dry et al., 1996;
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Loveys et al., 2000; Stoll et al., 2000). It maintains reason-

ably high yields because vines pick up water from the wet

soil zones, while quality is high because roots produce Ab-

scisic Acid (ABA) in the dry zones of the soil profile. In nat-

ural conditions, such spatial soil water heterogeneity can also

be found. The magnitude of such variations in soil moisture

and their impact on vine physiology has rarely been stud-

ied (one of the few being Bauerle et al., 2008). Soil moisture

spatial variations might play a key role in the terroir effect. In

a recent review, Schultz and Stoll (2010) remarked that soil

water (SW) monitoring is a challenging task because root

distribution is generally unknown and it is therefore difficult

to understand how much water is effectively absorbed in each

soil layer.

The reason why such spatial variations in soil water avail-

ability have rarely been considered is that, at present, soil

water measurements are generally obtained with in-soil de-

vices such as time domain reflectometers (TDR), which can

be difficult to use in field conditions. Furthermore, these de-

vices only measure a very small volume of the soil, and even

when the number of probes is increased, no information is

generally obtained about the lateral variation of SW and only

a vertical soil moisture profile can be established. In addition,

the number of such devices cannot be increased indefinitely

without major perturbations of the system and incurring pro-

hibitive costs. Geophysical imaging techniques, which are

rapid, cost-effective and cause only low perturbation of the

soil, have recently been proposed as a good proxy for the spa-

tialisation of soil water measurements (Michot et al., 2003;

Beff et al., 2013; Garré et al., 2011, to name but a few). As

the technique is recent and a generalised method does not ex-

ist, there have been no reviews on the possible approaches to

spatially measure soil water and its availability through these

geophysical techniques, especially those based on electrical

resistivity (ER), which are the most promising.

Vineyards are being studied, within an interdisciplinary

view of the soil system (Brevik et al., 2015), due to the high

erosion rates (Novara et al., 2011; Lieskovský and Kender-

essy, 2014; Martínez-Casasnovas et al., 2013), their spe-

cial man-made landforms (Tarolli et al., 2015) and pollution

(Fernández-Calviño et al., 2013; Novara et al., 2013; Parras-

Alcántara et al., 2013). This article concentrates on soil water

relationships in vineyards and will review the use of ERT to

spatially measure soil water and its availability to plants.

First, the grapevine physiological response to drought will

be briefly reviewed, with special regard to plant and soil rela-

tionships, as well as soil properties that affect plant water sta-

tus. Then, the concept of soil water availability to plants will

be discussed. Finally, the contribution of geophysical meth-

ods, and in particular ER, to the study of plant and soil wa-

ter relationships in vineyards will be discussed. These tools

are very promising for the quantification and visualisation of

plant and soil water relationships.

Part 1: A review about the use of ERT to spatially

quantify soil water and its availability to plants

2 Plant and soil water relationships in terroir

The effect of water on fruit production has received great in-

terest because it directly affects both the quantity and quality

of the final product. Water deficits have a physiological im-

pact at the whole-plant level. The need to acquire knowledge

on plant–soil–atmosphere water relationships is further in-

creased by the current context of global warming. A number

of studies have therefore flourished on the subject in recent

years and have shown that, in addition to trees, grapevines

can now be considered as model plants from both physiologi-

cal and molecular points of view. Among the reasons for such

success that can be mentioned here are the great progress

made in grapevine genomics (Jaillon et al., 2007) and the

long history of ecophysiological research for this plant. A

complete physiological and molecular update can be found

in Lovisolo et al. (2010). In this section we will provide only

a brief overview of water relationships between plants and

soils and their effects on terroir.

In grapevine a moderate water deficit reduces berry size

and increases technological quality (higher sugar levels and

lower acidity, for example). The reason is that the vegeta-

tive and reproductive organs are competing sinks for carbo-

hydrates produced by photosynthesis. Apexes are the most

important sinks when fruits are not present. When fruits de-

velop, they become progressively more important sinks for

carbohydrates. During water stress, apexes reduce and then

stop their growth, but the reduction in the vegetative growth

varies across vegetative organs and physiological processes

(Pellegrino et al., 2005a). If shoot growth stops before verai-

son, there is no competition for carbohydrates between fruits

and apexes during ripening. Red wines benefit from a mod-

erate water deficit, while sparkling or white wines do not,

nor table grapes (Sadras and Schultz, 2012). Soils favourable

to the installation of a moderate water deficit during the

summer, which are generally well suited to the production

of high-quality red wines, have been described in France

(Seguin, 1975; Choné et al., 2001a; van Leeuwen et al.,

2009), Italy (Storchi et al., 2005; Tomasi et al., 2013), Hun-

gary (Zsófi et al., 2009), the USA (Chapman et al., 2005) and

in many other regions in the world. Research into the effect

of water deficit on the quality of white wines is rare, but one

such study was performed by des Gachons et al. (2005). The

effect of water deficit on grape quality potential can be neg-

ative, because it causes an increase in phenolic compounds,

which is not considered favourable for the quality of white

wine (Sadras and Schultz, 2012). White wine also needs a

certain level of acidity, which is rapidly degraded during wa-

ter deficit (Ollat et al., 2002).

The amount of plant-available water in soils varies accord-

ing to soil characteristics, such as soil texture, amount of

organic matter and gravel content. Soil characteristics also
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affect the absorption process and have a direct physiologi-

cal effect on plants. When the texture of the soil is fine, the

soil matrix potential is low because of greater forces retain-

ing water in capillary pores and at the surface of clay min-

erals. Therefore, the plant water potential must be more neg-

ative to allow absorption, even if soil volumetric water con-

tent is higher in fine-textured soils compared to sandy soils.

Indeed, at the wilting point, the soil volumetric water con-

tent of fine-textured soil is always higher than that of coarse-

textured soils (Kramer and Boyer, 1995). Water in macro-

and meso-pores is generally more easily available to plants,

but it is also more mobile, as it is not retained by capillary

forces. Sandy soils have higher macro- and meso-porosity

than clayey soils, and the available water tends to be highly

variable in time. Contact between roots and soil, which is

necessary for absorption, is favoured in fine-textured soils

and more difficult in coarse-textured soils, as well as in soils

rich in gravels. These parameters influencing soil water po-

tential and water absorption by vines have an important effect

on the terroir effect, which is probably indirect and mediated

by the physiological adaptations of vines to the surrounding

environment (van Leeuwen, 2010). In Bordeaux vineyards,

wines produced on clayey soils, where the soil matrix poten-

tial is lower, are higher in anthocyanin content than those pro-

duced on sandy soils (van Leeuwen et al., 2004). Grapes also

ripen faster on clayey soils. In Tuscany, moderately saline

soils have been shown to produce the best wines (as evalu-

ated by a sensory panel) even if water is not limited, proba-

bly because the lower osmotic potential induces a moderate

water deficit, as measured by δ13C (Costantini et al., 2009,

2010). Soil texture modifies the plant’s response to drought,

as shown by Tramontini et al. (2012), who studied the ef-

fect of texture on grapevine physiology in neighbouring soils

during the same vintage. They observed that gravel soils lim-

ited stomatal conductance and predawn water potential more

than clayey and sandy soils. In sandy soils, stomatal conduc-

tance was highly variable, while it was less in clayey soil.

On gravel soils, stomatal conductance was constantly low,

independent of the level of water stress. Some authors have

attributed the reported physiological differences observed in

various soils to differences in root–shoot signalling mediated

by ABA (Lovisolo et al., 2010; Ferrandino and Lovisolo,

2014). The water-holding capacity of a soil varies with soil

depth. In deeper soils, vine vigour is higher and phenology is

delayed (Bodin and Morlat, 2006). Soil depth can also have

a direct effect on plant physiology, independent of the wa-

ter amount, which is known as the bonsai effect (Passioura,

2002). However, the influence of such physiological modifi-

cations in field conditions should be further investigated.

With increasingly dry soil conditions, the root / shoot

biomass ratio increases (Dry et al., 2000; Hsiao and Xu,

2000). While root growth continues in the most humid soil

layers (Bauerle et al., 2008), generally located at greater

depths, shoot growth is quickly inhibited by water deficit

(Schultz and Matthews, 1988; Lebon et al., 2006). The ex-

ploitation of soil water tends to be as complete as possible.

Indeed, the use of lateral resources plays a very important

role during drought periods (Bauerle et al., 2008). Plants can

also lose water during the absorption process at root level.

This process is called hydraulic lift, i.e. water redistribution

through plant roots from wet to dry soil layers. The amount of

water involved can be extremely significant (2–154 %), and

the movement of water has been documented in every direc-

tion, including lateral transfer (Smart et al., 2005). The phe-

nomenon has several physiological and environmental impli-

cations: it increases the survival of roots and maintains root–

soil contact in the more easily drying part of the soil, moist-

ens nutrients in the shallower soil layers, and keeps fine roots

alive in this part of the soil (Neumann and Cardon, 2012; Pri-

eto et al., 2012).

3 Assessing the soil water availability to plants

The available water capacity of a soil (also called soil water

holding capacity, SWHC) has been defined as the difference

between two limits of soil water content. The upper limit is

the volumetric soil water content at field capacity (the maxi-

mum amount of soil water, excluding free water, that a soil is

able to store in the root zone), while the lower limit is the vol-

umetric soil water content at the permanent wilting point (the

amount below which water is so strongly retained that plants

are unable to absorb it). Field capacity corresponds to a soil

potential −0.33 kPa (pF = 2.45), while the permanent wilt-

ing point has been defined at −15 kPa (pF = 4.2) (Richards

and Weaver, 1944). The concept of plant available soil wa-

ter capacity, in the form described here, was first introduced

by Veihmeyer and Hendrickson (1950). Its simplicity helped

to popularise it for irrigation purposes, but it is far from be-

ing unanimously accepted in the scientific community. It has

been argued that the definition of the two extremes lacks a

universal physical basis (Hillel, 1998), and also that water

cannot be considered equally available in the expected range

because availability decreases as the soil dries out and soil

water potential decreases (Richards and Wadleigh, 1952).

Furthermore, it is obvious that water availability to plants

cannot be assessed without considering the plant. Roots are

not uniformly distributed in the soil, water availability is het-

erogeneous in space and time, and such heterogeneity affects

plant physiology at the whole-plant level. Finally it has been

observed that plants, including grapevines (Costantini et al.,

2009), can absorb water at lower levels than the theoretical

wilting point (i.e.−15 kPa). It is worth noting that Veihmeyer

and Hendrickson (1950) already reported a similar observa-

tion for plants grown in containers. These observations can-

not be discounted and have to be taken into account both for

irrigation scheduling and for ecophysiological research.

One possible but only partial solution is the concept of

total transpirable soil water (TTSW). This approach seeks

to include root distribution in the assessment of soil water
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availability for plants (because root absorption is the first

cause of water content variation in soils) and also to evaluate

soil water capacity on the basis of the physiological response

of plants. TTSW is defined as the difference between soil wa-

ter at field capacity and soil water measured when plants are

no longer able to extract water from the soil, which depends

on the plant species. Both limits are directly estimated in the

field, and not in the laboratory, by moisture release curves.

The idea was first advanced by Ritchie (1981) and then suc-

cessfully experimented with both in herbaceous crops (La-

cape et al., 1998; Lecoeur and Guilioni, 1998; Guilioni and

Lhomme, 2006, to name but a few) and in woody species

(Sinclair et al., 2005; Lu et al., 2010, to name but a few). In

grapevines the concept has been used in the most recently

developed water balance model (Lebon et al., 2003; Pelle-

grino et al., 2006; Celette et al., 2010). Water balance mod-

elling is an interesting approach to assess vine water status in

both irrigated and non-irrigated vineyards, especially when

coupled to plant-based measurements (van Leeuwen et al.,

2010). Soil moisture can be difficult to measure in field con-

ditions because the grapevine is a deep-rooting species, often

grown on soils rich in gravels. Hence, measuring soil water

potential with tensiometers, or soil water content using time

domain reflectometry (TDR) or neutron moisture probes, can

be difficult or even impossible to implement. Furthermore,

these devices measure only a very small volume of soil, and

even when the measurement is replicated by increasing the

number of probes, no information is generally obtained about

the lateral variation of the TTSW. Only a vertical soil mois-

ture profile can be established. In addition, multiplying the

number of such devices can lead to major perturbations of

the system and prohibitive costs. The estimation of TTSW

with such devices depends greatly on the position of access

tubes or probes and can therefore yield misleading informa-

tion. Geophysical imaging measurements such as electrical

resistivity provide visual quantification of soil water content

in two or three dimensions and assess its variations over time.

Electrical resistivity is therefore a powerful tool to study soil

water relationships at high spatial and temporal resolution.

4 Electrical imaging of the soil water

Applications of geophysical imaging techniques, and specif-

ically electrically based techniques, have been tested and

reviewed in hydrology (Robinson et al., 2008), ecology

(Jayawickreme et al., 2014), plant science (Attia Al Hagrey,

2007), soil sciences and agronomy (Samouelian et al., 2005,

which also reviews the basic principles). They offer promis-

ing perspectives in agronomy, for both production and re-

search. The main techniques are based on the direct or in-

direct measurement of electrical resistivity (or of its oppo-

site, electrical conductivity), such as electrical resistivity to-

mography (ERT, or electrical resistivity imaging, ERI) and

electromagnetic induction (EMI). Measurements can also be

recorded with mobile devices, and several commercial sen-

sors have been developed to assist in soil mapping. The

success of electrical resistivity is based on its sensitivity

to soil properties, including water (Friedman, 2005; Hadz-

ick et al., 2011; Brillante et al., 2014a). It can be imple-

mented for many purposes, like soil texture mapping (Tri-

antafilis and Lesch, 2005); assessment of coarse element con-

tent in soils (Tetegan et al., 2012); the study of soil structure

and compaction (Besson et al., 2004), soil hydraulic con-

ductivity (Doussan and Ruy, 2009), and soil horizonation

(Tabbagh et al., 2000); assessment of the effect of different

tillage systems (Basso et al., 2010); map root distribution and

quantification of biomass (Amato et al., 2008, 2009; Rossi

et al., 2011) and absorption (Srayeddin and Doussan, 2009);

agricultural management, especially in precision agriculture

(Jaynes et al., 2005; Lesch et al., 2005; Corwin and Lesch,

2005; Andrenelli et al., 2013; André et al., 2012); and in the

evaluation of soil volume wetness and transpirable soil water

both at the plot scale (Michot et al., 2003; Attia Al Hagrey,

2007; Werban et al., 2008; Garré et al., 2011, 2013; Brillante

et al., 2014a, to name but a few) and at the field scale (Besson

et al., 2010), with interesting perspectives for applications in

plant ecophysiology.

4.1 Acquiring data

The relationship between ER and SW has been observed in

many studies, by many authors and in many different settings

(see Sect. 4.3). It is dependant on soil characteristics and is

therefore site-specific. Hence, in order to use ER to moni-

tor soil water it is necessary to perform a calibration, which

can be carried out in the field or in the laboratory. The fol-

lowing section will review and compare the procedures used

to acquire data to explore the relationship between ER and

SW. Modelling details will be described, but the technical

and practical aspects of ERT measurements will not be dis-

cussed (see the tutorial provided by Loke, 2014).

4.1.1 Laboratory methods

Data for successful modelling of the ER–SW relationship can

be acquired with either laboratory or field calibration. Lab-

oratory practices ensure tight control over all the environ-

mental parameters and therefore make it possible to develop

equations for the complete range of moisture conditions in a

given soil in a fast and easy way. Different methods of sam-

ple analysis are reported in the literature, from cylindrical

undisturbed soil cores (Michot et al., 2003; Michot, 2003) to

repacked samples in boxes (Hadzick et al., 2011). The valid-

ity of calibration developed in the laboratory for field appli-

cations is a matter of debate today, especially when the soil

structure is disturbed during sampling. Indeed, soil structure,

and especially its porosity, greatly affects soil bulk resistiv-

ity (Archie, 1942, and derived models); therefore Friedman

(2005) remarked that field application of calibration obtained
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with repacked samples should be avoided because of the

possibility of large systematic errors. On the other hand,

Nadler (1991) observed that ER–SW relationships were sta-

ble, whether measured on “field”, “packed” or “severely dis-

turbed samples”. Soil structure is not the only problem. Mi-

chot et al. (2003) used both laboratory (measuring the re-

sistivity of cylindrical soil cores) and field methods (with

the 4P method, described hereafter). They had to discard the

first method because the saturation water conductivity of the

cylindrical soil cores was different from the conductivity of

the soil solution. In addition, they noticed great variability in

the resistivity values obtained for different volumes of soil,

for the same soil moisture content: the higher the volume of

the soil core, the higher the electrical resistivity.

4.1.2 Field methods

Field methods permit calibrations specifically adapted to the

local context. They are more difficult to implement and the

control over the environment is lower than for laboratory

methods. In field conditions, it can take a long period of time

to obtain a variation in soil water content large enough to

fit the model, particularly in deeper soil layers, except for

irrigated vineyards located in dry regions. Different meth-

ods have been used to examine SW–ER relationships in the

field, using electrical resistivity, whether inverted or not. Two

methods can be used to measure the bulk ER (i.e. not in-

verted) of a soil in undisturbed conditions and then to explore

ER–SW relationships. The first is the 4P method (principles

and an example of application are provided in Michot et al.,

2003). This method uses four electrodes inserted perpendic-

ularly to the soil profile in a trench. The major part of each

electrode is isolated, except the end, to ensure a punctiform

contact with the soil (1–2 cm, or more in stony soils). Be-

cause the soil surrounds the electrodes in all directions and

current propagation is not limited by the air, as is the case

when electrodes are at the soil surface, the function that al-

lows the measurement of the potential difference, 1V , uses

4π instead of 2π . The second technique, which is easier to

implement, uses the electrical conductivity given by TDR

probes to fit the relationship between ER and SW (an ex-

ample is in Beff et al., 2013). If the TDR device is combined

with a datalogger, a large amount of data may be acquired

easily, rapidly and efficiently.

When inverted electrical resistivity is used, the inversion

uses a grid with the spatial resolution that best fits the soil wa-

ter measurements. The cells corresponding to the soil layer

where soil water measurements are available are selected,

and their ER is laterally averaged. The final data that will be

used for the spatialisation and imaging in ERT are used to fit

the relationships (an example of the procedure is provided in

Brillante et al., 2014a). The drawback of this approach is that

the inversion process, whether for the ERT technique or for

any other imaging technique, only yields estimated values of

ER (there is no single solution). The true value approached

by inversion is the bulk ER data of a specific region of soil.

The bulk ER data would be the most accurate choice, but they

are more complicated to obtain because the device used for

measuring has to be inserted in the specific region of inter-

est, while with inversion the device can generally be at the

soil surface. An advantage of the use of inverted ER is that

a greater amount of data can be acquired, therefore provid-

ing greater spatial coverage, both vertically and laterally. In

addition, Brillante et al. (unpublished data) tested both possi-

bilities, and concluded that if the inversion process converges

with a low associated error (lower than 5 %), then the dif-

ference between inverted ER and bulk ER is low enough to

justify the use of inverted data. The iteration to select and fit

the model also has to be defined. One possibility is to use the

iteration with the best performances in the relationship with

SW; another is to use the iteration with the lowest error (as

measured by RMSE, and lower than 5 %).

4.2 Temperature correction

Electrical current in soils is mainly electrolytic, i.e. based on

the displacement of ions in pore water. The electrical resis-

tivity of soil therefore depends on the amount of water in

the pores and its concentration in electrolytes. The ER de-

creases with a decrease in soil water content (Samouelian

et al., 2005). However, the electrical resistivity is also de-

pendent on other soil characteristics, such as the amount of

gravels and clay, salinity and temperature, the latter of which

because of kinetic effects on ion mobility in pore water. Be-

fore fitting any relationship between ER and soil water con-

tent, it is important to adapt the ER to the reference temper-

ature of 25 ◦C (Samouelian et al., 2005). A linear correction

equation is generally used to increase (or reduce) ER by a

factor α if soil temperature is higher (or lower) than the ref-

erence temperature (Campbell et al., 1948). The value of the

correction factor is approximately equal to 2 % (in the liter-

ature, the factor varies from 1.9 % in Amente et al., 2000, to

2.5 % in Brunet et al., 2010). It has also been observed that

the α factor can vary slightly for a given soil depending on its

temperature (Illiceto, 1969). Although some studies have ne-

glected this correction (in particular when temperature vari-

ations are low), its use should be considered good practice

(Brevik et al., 2004; Nijland et al., 2010).

4.3 Modelling of relationship between ER and SW

The relationships between ER and SW have been investi-

gated since the 1940s, initially for petroleum research and

then in geological contexts (Archie, 1942). Soil ER is de-

pendant on soil properties other than water, such as gravel

content, texture class, salinity and temperature (as reviewed

in Samouelian et al., 2005). Hence, a unique relationship for

an entire soil profile is possible only for homogeneous soils.

Examples can be found in Bernard-Ubertosi et al. (2009),

Brunet et al. (2010) and Brillante et al. (2014a). If the soil
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is heterogeneous, this has to be taken into account in the re-

lationship. One possible solution is to fit specific relation-

ships for each soil layer (see Michot et al., 2003; Beff et al.,

2013; Garré et al., 2011, among others). This method is ef-

ficient when SW probes are fixed in the soil. The fitting of

many individual relationships for a number of thin and regu-

larly spaced soil layers (for example, every 0.1 m in Brillante

et al., 2014a) can be accurate when soil water is measured

by probes inserted in access tubes. The separation of data

between the soil surface and the deeper soil layers also im-

proves the fit (Hadzick et al., 2011). Another solution is to

include soil properties in the model to used to develop pe-

dotransfer functions (Hadzick et al., 2011; Brillante et al.,

2014a). Many authors have developed semi-empirical geo-

physical models to describe the relationships and investigate

the main soil factors involved. Other authors have developed

purely empirically relationships. In the following sections,

different methods used to spatialise SW by ER are reviewed

in two groups: petro-physical models and experimental cali-

brations.

4.3.1 Petro-physical models

The first petro-physical model linking ER to SW was pro-

posed by Archie (1942) and is shown in Eq. (1) in terms of

electrical resistivity:

ρ =
a

φmθnσw
, (1)

where ρ is the electrical resistivity of the fluid-saturated rock,

φ denotes the porosity, σw represent the electrical conductiv-

ity of the brine, θ is the brine saturation, m is the cementa-

tion exponent, n the saturation exponent and a is the tortu-

osity factor. It was developed in pure sand without any clay

and can be useful for coarse-grained soil with limited clay

content (examples of applications are given in Attia Al Ha-

grey, 2007; Brunet et al., 2010). Indeed, clays can have a di-

rect effect on soil resistivity because clay minerals are elec-

trically charged and can directly conduct electric current at

their surface. The model developed by Waxman and Smits

(1968) was based on the Archie model, with the inclusion of

a term accounting for the cation exchange capacity (CEC) of

the medium. Like the Archie model, the Waxman and Smits

model was also developed for geological applications, but it

has been successfully applied in soil contexts (Garré et al.,

2011). Other modifications of the Archie law have been pro-

posed by other authors (Revil et al., 1998, 2007; Linde et al.,

2006; Shah and Singh, 2005), often with increasing complex-

ity in order to better capture the details of the electrical flow

in geological contexts. Many of these petro-physical models

were tested, in a laboratory experiment, for application on

loamy soils by Laloy et al. (2011). The Archie law has been

largely applied because of its simplicity (Frohlich and Parke,

1989), as has the Waxman and Smits model, the latter es-

pecially in its simplified form (as in Garré et al., 2011; Beff

et al., 2013). The generalised form of Archie’s law (proposed

by Shah and Singh, 2005, with an interesting application in

Schwartz et al., 2008) appears to be a valid alternative when

the soil contains clay and the conductivity of the soil matrix

cannot be neglected.

The use of such petro-physical models is interesting from

a geophysical perspective. They allow for comparison with

other studies, as the estimated parameters can be reused in

similar contexts. They also allow for further understanding

of the electrical resistivity of soils. However, in some situa-

tions, there is no consensus about the meaning of some pa-

rameters in the models, which may have been included only

with the aim of improving the fit (e.g. as the a coefficients

in the modified Archie law by Winsauer et al., 1952). More-

over, and particularly for the most useful models, the factors

influencing the ER–SW relationships are loosely compressed

into a few global parameters (as in the simplified Waxman

and Smits models), meaning that their precise interpretation

remains possible, although it is more difficult (Garré et al.,

2011).

4.3.2 Experimental calibrations

The use of a petro-physical model is not the only way to pre-

dict soil water content by ER. It is also possible to use a direct

empirical calibration, by regression analysis, and with paral-

lel measurements of the volumetric soil water content. This

can be the most direct approach if the aim is merely to use

ER as an ancillary variable to spatialise SW. This technique

has an accuracy that is comparable to the application of a

petro-physical model, and it has successfully been used by

many authors (among others Michot et al., 2003; Calamita

et al., 2012; Brillante et al., 2014a). A linear regression anal-

ysis was suggested by Gupta and Hanks (1972). However, the

relationship between SW and ER appears linear only when

considering a limited range of variations of these variables.

When looking at the data collected from different studies by

Calamita et al. (2012), it appears obvious that the global re-

lationship is not linear (as in all petro-physical models pre-

viously reviewed). Some adjustments are therefore needed

in order to account for the lack of linearity (Calamita et al.,

2012, and Brillante et al., 2014a, reviewed some possibili-

ties of adjustment). Alternatively, non-linear regression tech-

niques have also been used. Extrapolation (i.e. forecasting

outside the observed range of data) should be avoided be-

cause, in this type of calibration, only the form of relationship

relative to the observed data is modelled. Once the relation-

ship has been established, it is applied to transform inverted

ER data obtained with ERT method to spatialise the soil wa-

ter content.

Pedotransfer functions, such the ones typically used in

SWHC estimation, are currently being developed. The aim

is to estimate SW, available soil water (ASW), fraction of

transpirable soil water (FTSW) on the basis of ERT, and a

few selected soil properties (Brillante et al., 2014a) in order

SOIL, 1, 273–286, 2015 www.soil-journal.net/1/273/2015/



L. Brillante et al.: Use of soil electrical resistivity to monitor plant and soil water relationships in vineyards 279

to allow a wider use of the technique without the necessary

process of calibration and modelling, which is currently the

most time-consuming part of the work. Because of the easy

application of these experimental functions, it can be worth

comparing them to the other methods previously reviewed.

Part 2: Applying the electrical resistivity to monitor

the fraction of transpirable soil water, in relation to

grapevine water potentials – a case study

5 Material and methods

5.1 Experimental site

The results presented in this study are derived from data

collected over 2 years (2012–2013) in an experimental plot

located in a commercial vineyard (Domaine Louis Latour,

Aloxe-Corton, Burgundy) in France. Each plot is a 7 m× 7 m

area composed of 49 grapevines (Vitis vinifera, L.), culti-

var Chardonnay B. grafted on the SO4 rootstock (interspe-

cific cross between Vitis riparia Michx. and Vitis berlandieri

Planch.). Vines were guyot-pruned and trained in a vertically

shoot position trellis system with the first training wire at

0.5 m and the fruiting cane trimmed at 1.20 m; distance be-

tween plants was approximately 0.9 m. Plant position was

taken with a differential GPS (DGPS Trimble Geo XH V6,

precision < 5–10 cm). The soil is a Calcaric Cambisol (Aric,

Colluvic, Loamic, Protocalcic) according to the World Ref-

erence Base for Soil Resources (IUSS Working Group WRB,

2014), located in a foot-slope positions. The colluvium is

mainly composed of fine earth eroded from the soils of the

upper part of the slope, but also gravel (20 % in volume in the

first metre of the profile). The parent material was a marl–

limestone series dating from the middle Oxfordian. Figure 1

illustrates the plot location and equipment. Each plot was

equipped with three Tecanat™ access tubes for TDR soil

water measurement profiles and with 24 stainless steel elec-

trodes for ERT measurements. Meteorological data were col-

lected from an on-site weather station.

5.2 FTSW measurement and spatialisation

In 2012 and 2013, SW was measured weekly from bunch clo-

sure to grape maturity (approx. mid-June to mid-September,

28 dates) by TDR (TRIME-T3 IMKO GmbH, Ettlingen,

Germany; precision ±2 %). From SW measurements FTSW

data were computed as defined in the work by Pellegrino

et al. (2005b). The minimum and maximum SW values nec-

essary to compute the FTSW were found with a complete

search over all available measurements for each depth. Plants

reached a minimum value of approximately −0.4 MPa, nec-

essary to approximate the lower bound of FTSW during

2012. On the same days, electrical resistivity measure-

ments were performed using a multichannel resistivity me-

ter (Syscal Junior, Iris Instruments, Orleans, France) with

Figure 1. Scheme in 3-D which illustrates the equipment of the

experimental plot in the vineyard with devices for hydric and geo-

physical field-data acquisition. This image has already appeared in

Brillante et al. (2014a), courtesy of Elsevier.

24 stainless steel electrodes to generate high-resolution 2-D

electrical resistivity images along the vine rows, with pix-

els of 0.375 m by 0.1 m. The total length of the geophysi-

cal transect was 17.25 m. The centre of the geophysical tran-

sect is where the sensitivity of the electrical measurement is

higher and the investigation is deeper. Grapevines of the ex-

perimental plots where therefore chosen in correspondence

of the transect centre (length of the grapevine plots 7 m). A

pedotransfer function specifically developed in this soil and

published in Brillante et al. (2014b) was used to obtain 2-D

images of the FTSW. The random forest model used for the

pedotransfer function had an RMSE of 17 % in FTSW.

5.3 Plant physiological measurements

Predawn leaf9pd and solar noon stem9stem water potentials

(Choné et al., 2001b) were monitored weekly with a pressure

chamber (PMS Instruments Inc., Albany, OR, USA). Eight

grapevines were measured for 9pd and 12 for 9stem. Plant

water potentials were measured on the same day of soil water

and electrical resistivity measurements.

6 Results and discussion

Following the procedure described here above, the maps in

Fig. 2 were obtained. They show the variations in the FTSW

in a vineyard soil during the last year of the 2 years of mea-

surement (2013). In parallel the evolution of grapevine leaf

water potential is provided, measured both at the time of

maximum rehydration (red line, predawn leaf water poten-

tial) and at the time of maximum transpiration (blue line, so-

lar noon stem water potential). Rainfall and temperatures are

also indicated. At a first glance, maps of FTSW can be some-

what misleading, because even if all pixels are on the same

scale (as FTSW is a normalised variable), the numerical re-

lationship between FTSW and ASW varies across pixels. It

has to be considered that FTSW maps do not show dry and

wet soil regions, but they do show differences in soil water
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Figure 2. Weekly estimation of the fraction of transpirable soil water (FTSW) in a vineyard soil spatialised in 2-D by electrical resistivity

tomography. Green-filled dots represent fully developed plants and empty dots represent very young plants (1 year). The bottom-left panel

shows the grapevine water stress variation as measured by leaf water potentials, and the bottom-right panel the ombrothermic diagram of

2013 vintages, temperatures and precipitations.

depletion. Because of the relative scale, the amount of water

needed to bring the FTSW of two depleted pixels with the

same FTSW to 100 can be different, and these maps can-

not be read in this way. Regions of the soil that are only

marginally explored by roots, where all the FTSW corre-

spond to 0.01–0.02 cm3 cm−3 (1–2 %vol.) of SW, very soon

reach their extreme low and high values. A low FTSW value

is not necessarily the sign of greater root absorption but is pri-

marily the sign of the depletion of the water reservoir. How-

ever such confusion disappears when looking at the map time

series as a whole.

In Fig. 2 it appears that the FTSW and grapevine leaf wa-

ter potentials follow a similar temporal pattern, with alternat-

ing phases of depletion and replenishment, even at a weekly

scale. The pattern is also obviously related to the amount of

rainfall. Soil water tended to deplete throughout the season,

but heavy rains replenished the reservoir several times during

the season, especially at the end of July and the end of Au-

gust. The grapevine water deficit followed the same pattern,

even if it never indicated a severe plant water stress, but a

moderate one. It is very interesting to observe that the midday

9stem appears to be more sensitive than 9pd to even slight

variations in the FTSW, and follows the overall pattern of soil

moisture well. This confirms observations by van Leeuwen

et al. (2010). Between 0.10 and 0.20 m depth, a compacted

layer shows a singular temporal behaviour, compared to the

rest of the shallow soil, with low values of FTSW, even in re-

wetting phases. This layer is little explored by the root sys-

tem and can prevent water infiltration. The spatial variation

in FTSW is not limited to a vertical gradient, as it also varies

laterally, even if the grapevines are planted very densely in

this plot (0.9 m between plants). Traditional systems used for

monitoring soil water (TDR, neutron probes, etc.) can fail

to accurately assess the overall amount of the FTSW if the

choice of their location is not appropriate and if their posi-

tion relative to plants is taken into account.
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Figure 3. Variations in FTSW between two periods. White colour-

ing is mapped to the error associated with the computation of the

difference; further explanation can be found in the text. Green-filled

dots represent fully developed plants and empty dots represent very

young plants (1 year).

Figure 3 plots the variations of ER between two periods

(16–23 July 2013 and 15–21 August 2013), characterised by

a steeper reduction in the FTSW compared to other days.

These measurements were carried out at the end of the two

longest dry periods, with a parallel drop in leaf water poten-

tials. Variation maps, if compared to TDR-based FTSW, may

have higher errors than single date maps because of the cu-

mulation of errors when computing the differences between

the FTSW for various dates. The colour palette chosen for

presenting these maps takes into account the error (as mea-

sured by RMSE). White is used for pixels that do not vary,

and a gradient red or blue is used once the threshold of RMSE

is passed. Hence, when red or blue is used, the difference in

FTSW for different dates is significant. When looking at 16

and 23 July and 15 and 21 August in Fig. 2 it appears that the

soil globally dries out, but, looking at Fig. 3, it becomes ob-

vious that these differences are very localised. In July, when

the water deficit is still low, the regions of greater variations

of FTSW are located at the soil surface. In the map from

21 August, where the water deficit is higher (the predawn

leaf water potential lower), greater reduction of FTSW is ob-

served between the grapevines, as well as in deeper layers

of the soil. It is also interesting that FTSW variations are re-

duced for both maps at the location of a young vine. It ap-

pears that regions of great variations in FTSW alternate with

regions of lower variation. However, the spatial organisation

appears dependent on the level of water deficit experienced

by the grapevines. On 16 July, the predawn leaf water po-

tential is less negative than on 21 August and, with a lower

water deficit, water absorption remains localised at the soil

Figure 4. Cumulative variations of FTSW and ASW in a vine-

yard soil. These were obtained by summing the absolute values of

the variations between two successive measurements for these vari-

ables (28 measurements). Green-filled dots represent fully devel-

oped plants and empty dots represent very young plants (1 year).

surface. Lateral heterogeneity of FTSW is greater than in Au-

gust. Indeed, in the August map, the soil regions located im-

mediately beneath the grapevines appear to show the greatest

FTSW variations, but they also seem to increase the exploita-

tion of water in the area between plants.

Finally, Fig. 4 summarises the spatio-temporal soil water

relationships by cumulating the absolute values of all varia-

tions observed over 2 years (computed from the 28 dates of

measurement) in order to qualitatively detect hotspots in soil

for water absorption in relation to the observed water deficit

during the monitoring period.

7 Conclusions

This paper begins with the role of SW in the terroir to review

the current knowledge about soil water availability to plants

and its measurement. Specifically, it concentrates on the use

of ER for this purpose. Today, ER techniques arouse a great

interest among scientists and professionals because they al-

low for spatial quantification of water in soils in a rapid way

and with low perturbation. Generic reviews on electrical re-

sistivity can be found in the literature (a good example is

Samouelian et al., 2005), but works centred on the use of

ERT to monitor SW were still lacking. This review has tried

to be as complete as possible, but evidently some aspects will

merit further considerations. As an example, the work does

not describe in detail ERT-related technical approaches and

their suitability to spatialise and measure SW, such as the

use of different arrays, long electrodes or inversion method-

ologies. Conversely, this work well describes methods and
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modelling approaches to calibrate ER with TDR measure-

ments. However, some of the reported techniques are still

in their infancy, such as the use of pedotransfer functions in

SW estimation, and therefore their validity will be assessed

in time. A case study is presented at the end of the article,

with the purpose of showing the technique and to stimulate

curiosity in non-expert readers.

In conclusion, we believe that ERT is a technique with a

great future in agronomic scenarios, both from a research and

production point of view. It will allow for answers to new

questions on plant and soil relationships, and it will also open

the way to new techniques for water management in agricul-

tural scenarios.
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