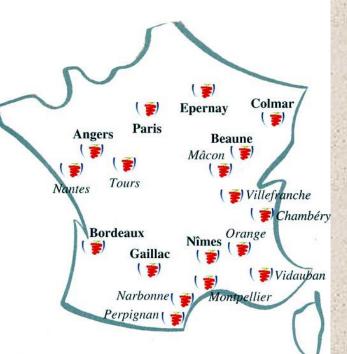


Reducing the impact of greenhouse gases on wine sector : situation in France and the OIVapproach

Joël ROCHARD French Institute of the Vine and the Wine

National Department in France for the Sustainable Wine sector +Management of effluents, waste and by-products +Studying and promoting viticultural landscapes and biodiversity +Viticultural adaptation to climate change +Impact of viticultural management on greenhouse gas effect

+Eco-design of cellars/Wineries


French Institute for Vine and Wine is applied research +National coordination +Interface **Research / Professionals**

Leonardo European proje

www.eviticlimate.eu

LIFE-ADVICLIM (2014-2019)

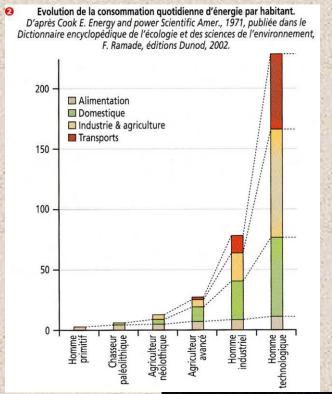
Sussex Mhelingau e Val de Loire Cotnari e Bordeaux

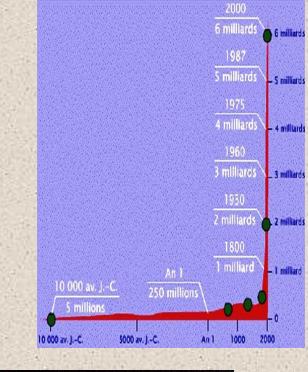
• Adaptation of Viticulture to Climate change :

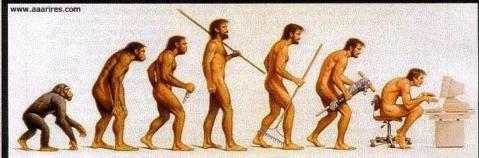
 High resolution study of viticultural adaptation and mitigation scenarios

Action B2 - Cultural practices GHG mitigation according to climate change scenario

 These will be assessed using environmental life cycle assessment, in order to integrate the mitigation strategies into the climate change scenarios

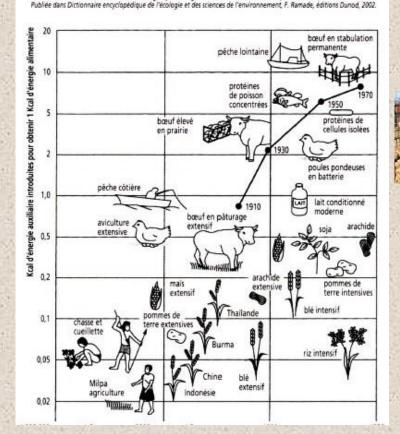



ADVICLIM


HUMAN 'S IMPACT ON THE PLANET

Evolution of daily energy consumption per capita

Demographic trends since the discovery of agriculture.



ADVICLIM

Evolution of energy consumption agriculture/viticulture

Evolution du rendement énergétique de l'agriculture Nord-américaine - d'après Steinhart, 1974

SUSTAINABLE GRAPE GROWING AT DIFFERENT LEVELS

ADVICLIM VINEYARD/PLOT

- Resistance
- Residues

1970 - 1980

REGIONAL /TERROIR

- Effect of beneficial Insects in relation to
- biodiversity
- Water management
- Landscape
 deterioration

1980 - 1990

PLANET

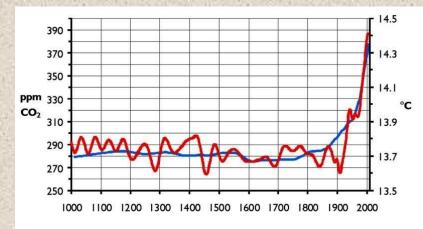
- Natural resources
- Global Biodiversity
- Air pollution
- •Greenhouse gas effect

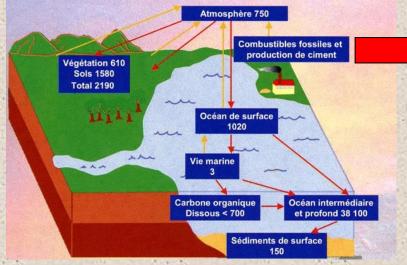
Indicators : Life cycle assessment

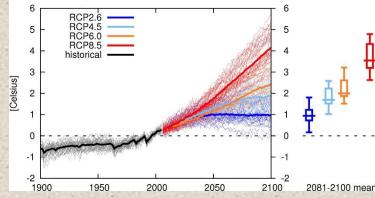
1990 - present

Best management

Integrated production


Sustainability (future generations)

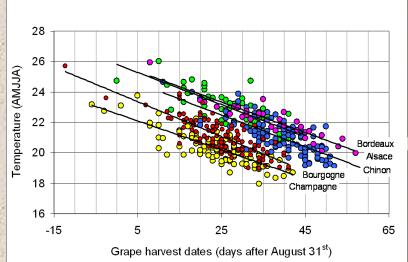


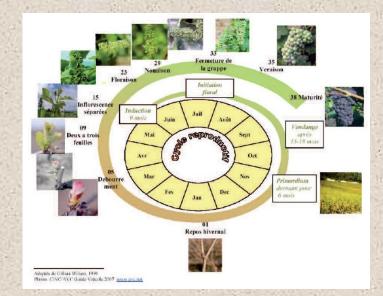


EXCHANGE CARBON (IN BILLIONS OF TONS/year) As of today we discharge about 6 to 7 billions tons of carbon /year (20 to 25 billions CO2 tons equivalent)

What about tomorow ?

Temperature change World Jan-Dec wrt 1986-2005 AR5 CMIP5 subset




Elevation des températures pour les 4 grands scénarios du GIEC Source KNMI

WINE SECTOR TOMORROW : EVOLUTION OR REVOLUTION?

Correlation between the temperature and of the dates of grape harvest of various vineyards (Source V. Daux – CNRS/ARVICLIM Project)

An average rise in temperature of 1° C of the maximum temperature during the growth period (April to August) corresponds to faster ripening and brings the harvest date forward by 10 days on average (8 to 12 days).

ources of CO2

lide CIVC

Sources of Methane

Sources N20 <u>mitrous oxide</u>

Slide CIVC

1000

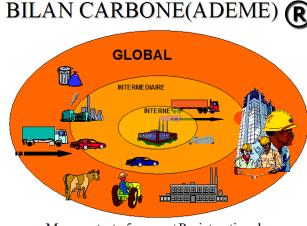
Airwell

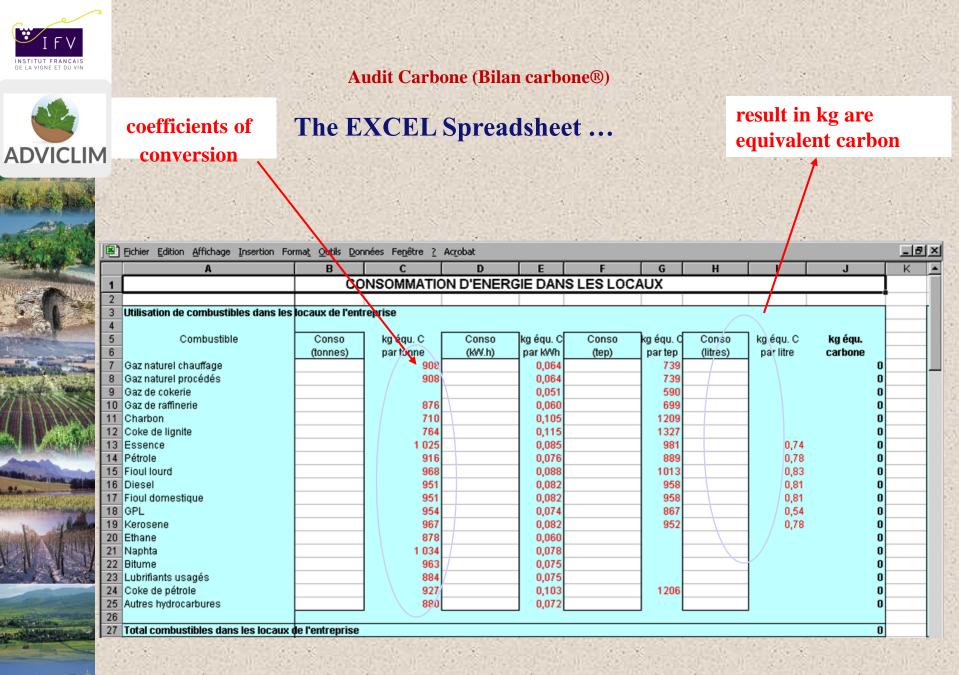
Halogened gases (

CIV(

Airwell

Accounting of the emissions of GESpar method Carbone® Assessment


- WO	GES	Persistance (in years)	Heating power
1	CO ₂	150	1
11- 11	CH ₄	12	23
	N ₂ o	120	296
10%	HFC / HCFC	220	12 000
	PFC	50 000	8 700
N - 11	SF ₆	3200	22 200



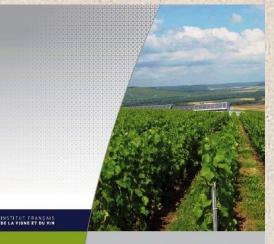
CARBON BALANCE

Mesures tests:5 caves +Projet national

- There are 3 three approaches
- **Internal** or legal basis, **for direct emissions called energy** (related to the use of energy, fossil or electric) and the so-called non-energy (related to the use of nitrogen fertilizers and leakage of refrigerants);
 - The **intermediate** perimeter or added emissions, taking into account some of the **transport** (internal cargo freight to customers, customers to exploitation, transport commuting employees, employees of transport-related missions), **manufacturing of inputs**, including purchase of grapes, as appropriate, as well as all the services charged to operations;
 - The **overall perimeter** or Bilan Carbone, which is the comprehensive consideration of all emissions attributable to operations, including the transport of inputs, **construction of buildings, waste management and wastewater**, the Amortization of capital assets.

ADVICLIM

Application of the Carbone balance ® assessment with the wine sector (in French)


Mesures tests:5 caves +Projet national

http://www.vignevin.com/publications/collection-itineraires.html

Production CO2Strategy reductionFactorsex viticulture

	Facteur d'émission (kg.éq.C/t)		
grafe aluminium (FE aluminium)	2.680	ADEME	30
Pisturits action galvanise	1000	AJYR	40
Rquebs acter galvanist (acter 40% recyclage)	738	AJYR	NC .
Rouels acacia	4	Groupe de travail	NC
Nerre à chaud	42	UNGDA	50
TI de pallssage en acier galvanisé (FE acier)	870	ADEME	30
Ti de palissage ince neuf 18/8	1432	Bilan Produit 2008	NC
Fil de pallssage inoz recyclê 18/9	1255	Bilan Produit 2008	NC
Compost (par tonne de déchets compostés)	30	ADEME	50
Suifate d'ammonium (par tonne de mattère active)	200	UNGDA	50
Sullochaux" (par lonne de matière active)	100	UNGDA	50
Suttosof" (par forme de matière active)	1000	UNGDA	50
Produits annoiogiques	Facteur d'émission (kg.ég.C/t)	Source	Incertitude (%)
kcide citrique, monohydrate	900	UNGDA	50
Icide D.I. tartrique	900	UNGDA	50
kcide sorbique	220	LINGDA	50
Abumine d'osuf, colle de poisson, gélatine, lactalbumine, castinute de polassiam	1508	ADEME	30
Autres acides et sels d'acides	900	Groupe de travail	50
Bentonite, kaolin	300	UNGDA	50
Bisuifite de potassium	400	UNGDA	50
Carbonate de calcium	20	IMA Europe	50
Copeaux (bols)	10	ADEME	50
Ethanol rectilié d'origine agricole	400	ADEME	25
Ethanol rectifié d'origine viti-vinicole	500	UNGDA	50
Somme arabique	400	LINGDA	50
Micro-organismes et extraits bactéries, levures, écorces de levures)	600	UNGOA	50
Problines de lait / lait en poudre	5107	ADEME	70
Saumure (chlorure de sodilum)	46	Eco-Profils Plastic Europ	NC
SO, Ilaulde	120	Bilan Produit 2008	NC
Sucre (saccharose)	200	ADEME	20
Canins	600	UNGDA	50
lutres produits annoiogiques	5107	Groupe de travail	70
lutres intrants de vinilication	Facteur d'émission (kg.ég.C/t)	Source	Incertitude (%)
20, d'origine chimique (fabrication)	223	ECO-Invent	NC
Geseiguhr, diatomites, pertites	275	AIYR	50
Capsule tirage aluminium vin effervescent (FE aluminium)	2680	ADEME	30
Obturateur PE* (FE moyenne plastiques)	650	ADEME	20
Eau potable	0.087	Bilan Produit 2008	NC

ivité	Préconisations générales	Actions proposées	Impacts positifs directs	Niveaux d'efficacité
	Diminuer les consommations de fuel	Choix des équipements de traction en fonction des besoins réels	Energie interne	
		Réglage du tracteur	Energie interne	
		Réduction du régime des tracteurs		
		Espacement des rangs à la plantation		
		Raisonnement des interventions sur les parcelles : optimisation des trajets, couplage d'opérations	Energie interne	
	Raisonner la lutte antigel	Suivi précis de la météo	Energie interne	
		Recours aux techniques de brassage d'air, d'aspersion d'eau, de combustion de gaz, plutôt que l'utilisation de chaufferettes au fuel	Energie interne	
	Raisonner les pratiques culturales	Amélioration de la structure des sols	Emissions non énergétiques	
		Diminution de la compaction des sols	Emissions non énergétiques	
		Enherbement temporaire ou permanent des vignes	Emissions non énergétiques	
	Raisonner l'emploi des produits phytosanitaires	Respect des prescriptions (doses / hectare)	Energie interne - émissions non énergétiques - intrants - fret entrant	
		Raisonnement du nombre de traitements phytosanitaires	Energie interne - intrants - fret entrant	
	Raisonner l'emploi d'engrais minéraux azotés	Raisonnement de la fertilisation	Energie interne - émissions non énergétiques - intrants - fret entrant	
		Recours aux amendements organiques	Emissions non énergétiques -	

Comptabilisation des émissions de gaz à effet de serre : Application de la méthode Bilan Carbone® à la filière viti-vinicole

ITINÉRAIRES

N*24

International Organisation of Vine and Wine Intergovernmental Organisation

ADVICLIM

A first resolution was finalized, providing the general principles of oiv protocol for calculating the 😴 stock of greenhouse gases for the wine sector If contain information on the approach to scale companies and the industry products. In preparation : resolution guideline communication and document references international datas greenhouse effect in wine sector

RESOLUTION OIV-CST 431-2011

THE OIV GREENHOUSE GAS ACCOUNTING PROTOCO FOR THE VINE AND WINE SECTOR

Vineyard biomass and winemaking coproduct Valorisation

- Oenological energy process
- Tractor (power, biocarburants?)
- ADVICLIM •Nitrogenous fertilization émissions/discharge de N2O
 - Freight & shipping packaging
 - Transportation worker
 - Management inputs , services)
 - Energy effectiveness of the buildings« Ecoconception » Communication

Plants which produce Nitrogen in winter (IFV Sud-ouest)

valorization vine shoot

Valorization pomace, lies etc.

Project ECOWINERY

www.ecowinery.eu

Leonardo Da Vinci Project

Programme d'éducation et de formation tout au long de la vie

LEONARDO EUROPEAN PROJECT ECOWINERY

www.ecowinery.eu

COMINERY

Development of awareness raising and training tools to cellar eco-design

Eco-building design should combine green architecture, good insulation possibly completed with original solutions (like green walls, roofs and Canadian wells...) and alternative energy.

The EcoWinery project aims to provide training tools for cellar eco-design addressed to consultants, project managers, architects and teachers.

partner experiences, the EcoWinery e-learning solution will be organised around five independent module

- Regulatory and energy contexts
- itectural approach and green building
- e of water in a winery, especially through landscaping around the winery, such as reed

Project Coordinator:

WINERY WASTEWATER TREATMENT mainly aerobic systems

Source : Nicolas

SPATEWAI

ENERGY? SLUDGES? LANDSCAPE INTEGRATION?

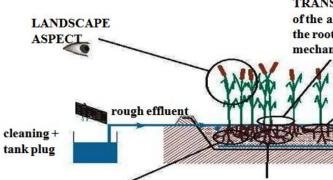
Micro

reduction

Dissolves

0

en a Rifeinhell



Wetland area

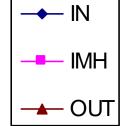
ASSIMILATION biomass, plants carbon, nitrogenizes, phosphorus, potash, metals TRANSFER Of OXYGEN of the air parts towards the roots - aerobic mechanism (surface, stem)

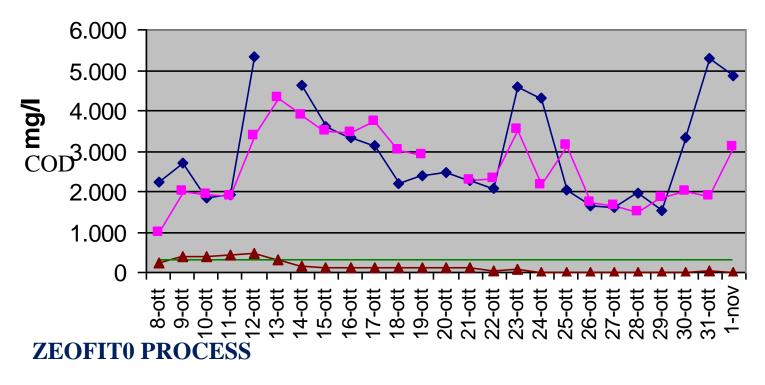
> FILTRATION: retention of the particles - limit filling on the surface (development of the stems in the deposit)

Exit (treated water)

AEROBIC MICROBIAL ACTIVITY (support effect) stimulation of the degradation of the organic compounds, pesticides

Reed


CONSTRUCTED WETLAND




zeolitic mineral

THERMAL INERTIA UNDERGROUND

Caves « crayère » Champagne

Photo 1: Clos de la Tech Winery (La Honda, Californie, USA), exemple d'une cave forée.

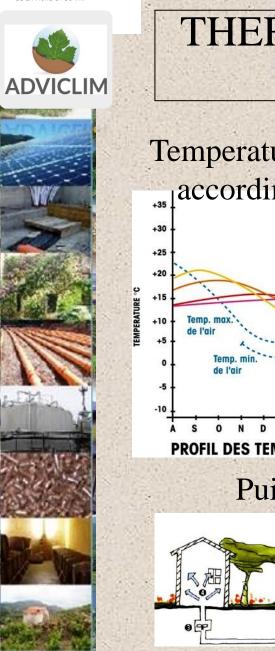
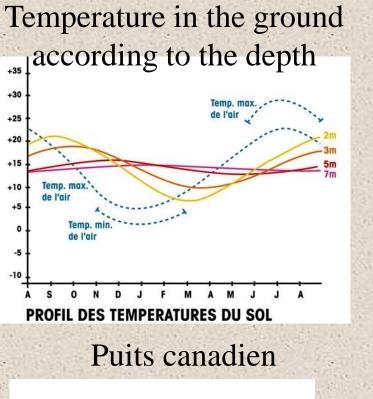
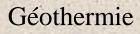
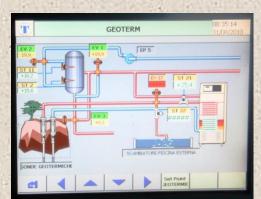
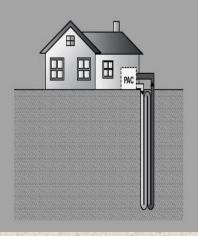


Photo 5: Woollaston Estates Winery, vue en coupe de la conception « en escalier » d'une installation à écoulement par gravité (Nelson, Nouvelle-Zélande).






THERMAL INERTIA UNDERGROUND



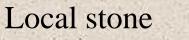
ENERGIE

Geothermic

Solar

Canadien well

By water



ECO-DESIGN WINERIES/CELLARS

Vegetative roof

cenclogues

Vegetative wall

CONCLUSION

EVOLUTION OF THE CLIMATE /GREENHOUSE EFFECT

