Adaptation Strategies of Bordeaux's wine growers to face Climate Change

A. Alonso Ugaglia¹, E. Giraud-Héraud², S. Pérès^{1,2} & Y. Surry³

¹Bordeaux Sciences Agro, ISVV, Gradignan, France ²Univ. de Bordeaux, INRA, GREThA UMR CNRS 5113, Villenave d'Ornon, France ³Swedish University of Agricultural Sciences (SLU), Department of Economics, Uppsala, Sweden

Introduction

- There is a strong consensus among international scientists regarding the existence of climate change (CC)
- Evidence of this phenomenon is provided by several empirical studies (for a review, see Ashenfelter and Storchmann, 2014).
- Scholars have demonstrated that climate affects :
 - vineyard yields (Lobell *et al.*, 2006; Fraga *et al.*, 2014),
 - wine quality (Jones et al., 2005; de Orduna, 2010; Ashenfelter and Storchmann, 2010b),
 - wine prices (Ashenfelter et al., 1995; Lecocq and Visser, 2006; Chevet et al., 2011),
 - the economic effect on wine firms' profitability in terms of net revenue or profit (Haeger and Storchmann, 2006; Ashenfelter and Storchmann, 2010a; Ashenfelter and Storchmann, 2010b; Marinoni *et al.*, 2012).

But about almost nothing is known about the potential responses and efficient adaptation strategies implemented by wine growers to these different changes (Seguin, 2007).

Research question

- To produce relevant models about wine growing areas evolution in the future, research has to consider the adaptation strategies adopted by the wine growers.
 - Wine growers could have to consider every year differently the harvest date, the spraying, green harvesting, tillage, irrigation and so on... : modifications in the technical routes, oenological processes or marketing strategies are required
- But are wine growers really adapting their vineyard/cellar management or marketing strategies to climate change ?
 - CC: maintaining a strategic flexibility (when necessary) thanks to annual or one-time changes
 => short-run, every year, different for every vintage
 - GW (Global Warming): adaptation to the climate structural evolution (higher temperatures)
 => changes in the long-run, routines modification

Objectives

Trying to identify if and how the wine growers are adapting to CC/GW in the Bordeaux wine area:

- In the short-run (within a vintage): adaptation to CC. Which changes ?
- From a vintage to another
- In the long-run: adaptation to GW. Which changes ?

Bordeaux, April 10-13, 2016

- The Bordeaux wine region 113 000 ha
 57 appellations (97% of the production)
- 2015 (CIVB, 2016):
 - 4.8 MhL, 640 Mbt (-5%)
 - 3.8 billion € (+1%)

Saint-Emilion vineyards 5400ha 966 growers

Bordeaux - Bordeaux supérieur area 55% of the production 4281 growers

Bordeaux, April 10-13, 2016

2003

I. Methodology: a survey-based on wine growers from Saint-Emilion and Bordeaux-Bordeaux Supérieur appellations

- A survey: **321 grape and wine growers** in the Bordeaux wine region (focus on 2 groups of appellations: *Bordeaux-Bordeaux Supérieur* and *Saint-Emilion*) about the adaptation of the growers according to CC
- Economic evaluation of these practices according to the so-called « *effet millésime* »

II. Adaptation as a routine

- Producers are aware of climate change because when speaking about "effet millésime" with them; they directly associate climate change and climatic variations (sun, rain, climate, temperature, meteorology).
 → 2003, 2005, 2009, 2010, 2013 for the more quoted ones.
- They estimate to globally benefit from CC.
- They are adapting depending on the vintage and the appellation group

	Saint-Emilion group	Bordeaux-Bordeaux supérieur group
2003	55/88=62.5%	142/233=60.9%
2010	38/88=43.2%	76/233=32.6%
2013	55/88=62.5%	103/233=44.2%
All	61/88=69%	154/233=66%

Table 1: Adaptation according to the vintage and the appellation group

II. Adaptation as a routine

• Which adaptations in the short-run ?

Strategic Flexibility

 \rightarrow mainly technical ones for grape production, depending on the vintage

Table 2: Adaptations according to the different vintages

Vintage	% growers	Operations concerned Regr		Identified brakes
2013 (cold, humid)	62%	Grapevine management (especially chemical treatments) Early harvest for sanitary reasons (Botrytis) Thermo-vinification	Grapevine Management	Organization Anticipation Production cost
2010 (« perfect » vintage)	48%	Vinification-wine processing Grapevine management Soil management	Vinification- wine processing (pumping)	Investment Organization Anticipation Production cost
2003 (very hot summer)	75%	Early harvest Soil management Grapevine management	Soil management (management of the grass in the ranks)	Anticipation Production cost Equipment Appellation rules

II. Adaptation as a routine

• Which adaptations in the long-run?

Structural Evolution

Maximum 22% of them are considering long-term modifications (depending on the type of practice).

→ Date of harvest, plantation density (especially in the *Bordeaux Bordeaux-supérieur* area), change in grapevine varieties and rootstocks.

 \rightarrow Mainly technical aspects for the vineyards, instead of wine processing and marketing.

Appellations rules defining a lot of things like the possibility to irrigate, the authorized varieties and rootstocks and their %, the density, ...

 \rightarrow The growers don't see these rules as important brakes for changing and coping with climate change.

→ Could easily be changed (55% of them are favorable to modify them) when percieved as constrainsts, especially for irrigation issues, authorized varieties according to their adaptation or not to climate change.

III. Experience matters

Probit model (2013 vintage)

Yi = 1 if adaptation occurred in year 2013 ; 0 otherwise

		Log pseudolikelihood =-134.31608 Variables Coef		Wald chi2(10) = 106.45 Prob > chi2 = 0.0000 Pseudo R2 = 0.3496
				Robust Std.Err.
Traditional factors	٢	Age	-0.005	0.007
		Diploma	0.458***	0.199
	1	UAA vines	0.000	0.003
		UTH (labor)	0.012	0.013
	ſ	St Emilion Appell	0.593***	0.199
Production/Marketing informations		Соор	-0.881***	0.266
		Bottle	0.303*	0.238
		Mix	0.198	0.379
Expérience	L	Env	0.348**	0.181
	\leftarrow	Adapt_2003	1.841***	0.207
		cste	-1.238***	0.477

III. Experience matters

- General information has a significative impact on the adaptation strategy
 - Profile of the wine grower: high education level is the only variable able to significantly affecting the adaptation in 2013
- Information about production and marketing
 - Bottle vs bulk: a high valuation of the product (bottles) leads to a higher probability of adaptation
 - Cooperatives: not managing the wine process
 - Territorial issue: the appellation context matters (village appellation vs regional appellation)
 - Implementing environmental approaches affects the adaptation in 2013
- Experience matters

To understand a 2013 decision, it is very important to know the past! Even if the adaptation in the short-run is not the same in 2003 and 2013, the probability to adapt in 2013 depends strongly on the adaptation in 2003.

Bordeaux, April 10-13, 2016

Conclusion

- 1/ Based on the conducted survey, grape and wine growers are anticipating the changes from one vintage to another, in *Bordeaux-Bordeaux supérieur* and *Saint-Emilion* appellations
 => Strategic flexibility in the short-run to face CC
- 2/ Based on the estimated probit model, we also show that they have the ability to develop a structural adaptation in the way they are designing their vineyards (vine management, plant material, ...) and a dependance between vintages

=> Anticipation in the long-run to face GW

- 3/ Parallel evolution between technical routes and annual climate change/global warming
- 4/ Work is still ongoing:

-improving the probit model (introducing the dynamics \Rightarrow dynamic probit model, new variables, other vintages),

-identifying different types of behavior (MCA) and criteria for decision

-analyzing the dynamics of the industry to help grape growers anticipate and implement change in appellation systems (AOCs).

Bordeaux, April 10-13, 2016

Thank you for your attention

Bordeaux, April 10-13, 2016

References

• Ashenfelter, O., Storchmann, K. (2014) "Wine and climate change", *AAWE* Working Paper No. 152 (http://www.wineeconomics.org/aawe/wpcontent/uploads/2014/03/AAWE_WP152.pdf).

• Ashenfelter, O., Storchmann, K. (2010a) "Measuring the economic effect of global warming on viticulture using auction, retail and wholesale prices", *Rev. Ind. Organ.* 37, 51–64.

• Ashenfelter, O., Storchmann, K. (2010b) "Using a hedonic model of solar radiation to assess the economic effect of climate change: the case of Mosel valley vineyards", *Rev. Econ. Stat.* 92 (2), 333–349.

• Ashenfelter O., Ashmore D., Lalonde R. (1995) "Bordeaux Wine Vintage Quality and the Weather", Chance, 8, pp.7–13.

• Chevet, J.M., Lecocq, S., Visser, M. (2011) "Climate, grapevine phenology, wine production, and prices: Pauillac (1800–2009)", Am. Econ. Rev. Pap. Proc. 101 (3), 142–146.

• Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2014) "Climate factors driving wine production in the Portuguese Minho region", *Agric. For. Meteorol.* 185, 26–36.

• Haeger, J., Storchmann, K. (2006) "Prices of American pinot noir: climate, critics, craftsmanship", Agric. Econ. 35, 67–78.

• Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R. Tabor G., Zhi L., Marquet P.A., Hijmans R.J. (2013) "Climate change, wine, and conservation", PNAS.

• Jones G.V, White M.A., Cooper O.R., Storchmann K. (2005) "Climate Change and Global Wine Quality", Climate Change, 73, pp. 319-343.

- Lecocq, S., Visser, M. (2006) "Spatial variations in weather conditions and wine prices in Bordeaux", J. Wine Econ. 1 (2), 114–124.
- Lobell D., Gourdji S.M. (2006) "The Influence of Climate Change on Global Crop Productivity", *Plant Physiology*. 160 (4), 1686-1697.
- Marinoni, O., Navarro Garcia, J., Marvanek, S., Prestwidge, D., Clifford, D., Laredo, L.A. (2012) "Development of a system to produce maps of agricultural profit on a continental scale: an example for Australia", *Agric. Syst.* 105 (1), 33–45.

• de Orduna, R.M. (2010) "Climate change associated effects on grape and wine quality and production", Food Res. Int. 43 (7), 1844–1855.

• Seguin B. (2007) Réchauffement climatique, quels impacts probables sur les vignobles ?, Colloque Vin et culture, 28-30 mars 2007, Bourgogne.

Adaptation Strategies of Bordeaux's wine growers to face Climate Change

A. Alonso Ugaglia¹, E. Giraud-Héraud², S. Pérès^{1,2} & Y. Surry³

¹Bordeaux Sciences Agro, ISVV, Gradignan, France ²Univ. de Bordeaux, INRA, GREThA UMR CNRS 5113, Villenave d'Ornon, France ³Swedish University of Agricultural Sciences (SLU), Department of Economics, Uppsala, Sweden

