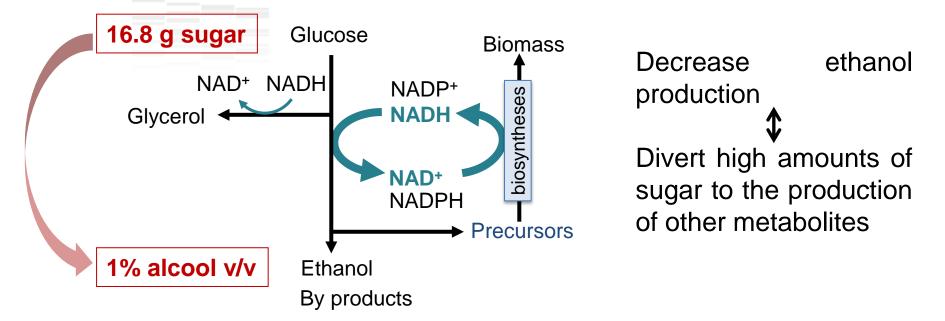


How to adapt winemaking practices to modified grape composition under climate change conditions?

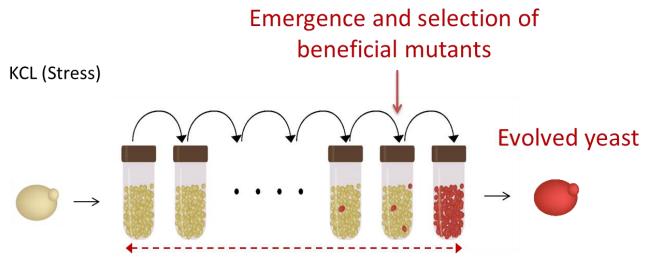
Consequences of climate change


Source: Dubernet laboratory

- How to adapt winemaking practices ?
- Which new tools ?
- Research subjects of our groups

Microbiological strategies

How to reduce the alcohol yield of wine yeast?


Strong constraints

- Avoiding the accumulation of undesirable by-products
- Preserving strains performances
- Maintaining carbon and redox balances

Glycerol : a good candidate

Adaptive evolution: a GM free approach

Glycerol production : a cell response to osmotic stress (KCL)

Hundreds of generations Accumulation of low-frequency, spontaneous mutations

Strains overproducing glycerol obtained after 200 generations Backcrosses between the most performant strains \rightarrow Strain H2

Pilot-scale trials (1 hL)

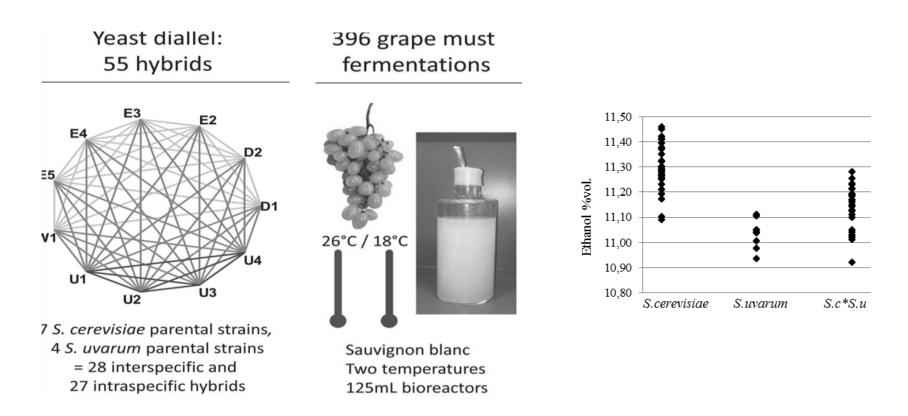
	Syrah 1 28°C		Merlot 25°C		Syrah 2 Low sugar		Syrah 2 High sugar	
Ethanol (%)	15.1	13.7	14.3	13.4	13.3	12.8	16.1	15.3
Glycerol (g/l)	11.2	17.1	7.1	13.0	8.1	13.1	10.1	17.2
Total acidity (g/l)	2.65	3.65	1.55	2.05	4.85	6	4.75	5.95
Volatile acidity (g/l)	0.4	0.05	0.29	0.21	0.14	0.09	0.28	0.11

- . Decrease of ethanol : 0.6 1.3% / Effect of θ, S . Increase of glycerol
- . Increase of total acidity / Decrease of volatile acidity
- . Potentially of industrial interest

Tilloy et al., 2015

Hybrids and Non Saccharomyces strains

- Increase of genetic and phenotypic variability
- Incomplete understanding of the metabolism
- Hybrids


Intra or interspecific level : *S. uvarum, S. kudriavzevii*... Differences in glycerol and redox metabolism

Non Saccharomyces

Many species Necessity of mixed or sequential cultures

Hybrids

Decrease of ethanol yield (less than 0.5 %) Adaptative evolution experiments carried out to improve the best hybrid

Da Silva et al., 2015

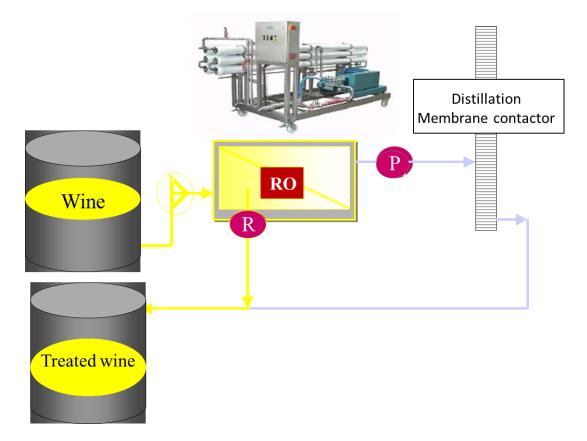
Non Saccharomyces

Candida <i>zemplinina</i>		S. cerevisiae	S. cerevisiae C. zemplinina*		
 48 isolates stuck fermentations sequential cultures ethanol decrease : 0,4-0,9 % 	Ethanol (%)	13.91 ± 0.00	13.16 ± 0.07		
	Yield (g/g)	0.46 ± 0.00	0.43 ± 0.00		
	Glycerol (g/l)	7.30 ± 0.48	13.03 ± 0.87		

* : Sequential culture : 10⁷ C.z. + 2 10⁶ S.c. (24h)

High sulfur off-flavor Need for additional research

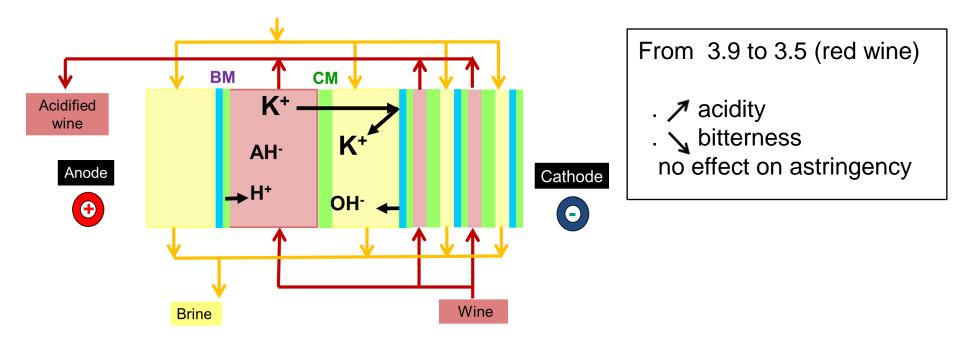
Bely et al., 2012



Technological strategies

Reducing ethanol

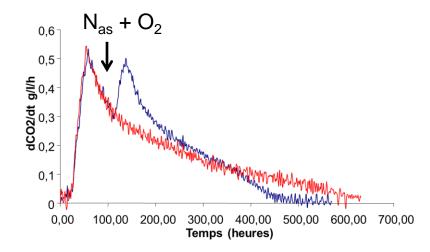
- Several techniques authorized—OIV recommendation
- Interest of semi permeable membranes


Industrial equipments

Few impact on sensory properties

Adjusting pH

- Electrodialysis authorized
- Cationic membrane ↘ [K⁺] ↔ PH


Samson et al., 2009 Caillé et al., 2011

Control of key winemaking operations

Fermentation

- . Nutrients (Nass., O₂, lipids)
- . Protectors (rehydration phase)

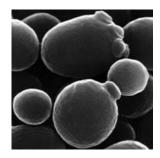
Blateyron et al., 2000 Casalta et al., 2016 Salmon and Julien, 2007

Oxydation

- . Decrease of SO_2 effectiveness
- (pH, doses)
- . Alternatives :

Low temperature during key steps Inactivated yeasts during aging

> Aguera et al., 2012 Sieczkowski et al., 2016


Conclusion

Many different strategies

Functional

Subject of research

Correction of defaults → Integrated approaches to optimize quality

