Modified grape composition under Climate Change conditions requires adaptations in the vineyard

> Cornelis (Kees) VAN LEEUWEN, Agnès DESTRAC, Philippe DARRIET, Alexandre PONS and Lucille ALLAMY

Climate Change results in increased temperatures...

Increase in atmospheric CO₂

Increase in temperatures

Neethling et al., 2011

Météo France

.... and increased water deficits

Not necessarily because of reduced rainfall

Consequences of increased temperatures

Grape composition at ripeness in Languedoc (Source: Dubernet laboratory, Narbonne)

Advanced harvest dates

Grapes : Higher sugar levels Lower acidity

- Dried fruit aromas increased with harvest date and grape maturity
- y-nonalactone increased with dried fruit aromas and harvest date (oxidation mecanism)

Poster L. ALLAMY : Number

in recent vintages from a same estate

Consequences of increased water deficit

Conditions for producing high quality « terroir » wines

- Grapes must reach full ripness
- Grapes should not ripen in the hottest part of the season
- → Ideal window for ripeness : between September 10 and October 10
- Risk with climate change : too early ripening

Adaptations to increased temperatures

Delay ripeness

Delay maturity : 1 - training system

- Late pruning
 - Up to one week delayed bud break
- Trunk height
 - Lower maximum
 temperatures in the fruit
 zone

FIGURE 190 Evolution moyenne durant 3 années de la température minima et de la température maxima mesurées sous abri à 20 cm et à 2 m par CHAPTAL à Montpellier, Bel Air.

Champagnol, 1984

Delay maturity : 2 - Canopy management

- Limitation of leaf area / fruit weight ratio
 - Delays veraison
 - Decreases grape sugar (slower accumulation)
 - Little effect on acidity
- Effect on aromas and skin phenolics ?

Delay maturity : 3a – Plant material (rootstock)

- Up to one week delay in veraison
- Likely even more at ripeness

Merlot grafted on 4 different rootstocks in the Saint-Emilion area

Boehler et van Leeuwen, unpublished

Delay maturity: 3b - Plant material (variety)

- Variety choice is the most powerfull tool to delay maturity
- Change variety among existing varieties
 - Merlot -> Cabernet-Sauvignon
- Introduce new varieties

Delay maturity : 3c - Plant material (clone)

• Up to 8 days delay in veraison among clones

Cloanl collection of Cabernet franc, Saint-Emilion

Porcontago of vorsison

		r ercentage of veraison				
	Clones	03/08/2009	07/08/2009	11/08/2009	Mid veraison	
09 05 73	Α	58%			02/08/2009	
27 37 78	н	52%			03/08/2009	
27 44 14	l I	46%	72%		04/08/2009	
27 23 66	G	46%	84%		04/08/2009	
14 47 62	F	43%	85%		04/08/2009	
11 34 28	С	45%	70%		04/08/2009	
13 32 08	D	28%	65%		05/08/2009	
13 55 39	E	38%	85%		05/08/2009	
27 44 63	J	36%	76%		05/08/2009	
11 28 26	В	17%	63%		05/08/2009	
GR 07 30	К	23%	48%	69%	08/08/2009	
14 52 45	L	20%	39%	65%	09/08/2009	
GR 08 26	М	18%	33%	63%	10/08/2009	

van Leeuwen et al., 2013, JAFC 13

All these options can be combined and implemented consecutively

- Regional specifications
- For most regions these options will allow maintaining production and typicity at least untill 2050

Action	delay in maturity (days)		
Higher truncs	3 - 5		
Later pruning	3 - 5		
Dereased LA / FW ratio	5 - 12		
Rootstock	3 - 6		
Clone	3 - 8		
Local variety	0 - 14		
Non local variety	10 - 25		
Total with local varieties	17 - 50		
Total with non local varieties	27 - 61		

Simulation maturity dates PR = recent past FP = 2020 - 2050 FL = 2070 - 2100

Pieri, 2012, Climator

Choice of harvest dates

- Easy to implement adaptation to modify grape composition
- Paradoxe : over the past 30 years tendancy to increased veraison - harvest duration (« hang time »)

Adaptations to increased water deficits

Adaptation to increased water deficits : 1a - Plant material: rootstock

- The use of drought resistant rootstocks (110 R) is cost effective and environmental friendly
- New drought resistant rootstocks should be created

RGM3

Photo: Pr. H. Schultz

Adaptation to increased water deficits : 1b - Plant material : grapevine variety

- Mediterrenean varieties are drought resistant
- Avoid using sensitive varieties in dry climates

•Appellation: Campo de Borja, Aragon, Spain •Annual rainfall : 350 mm •Photos taken on 10 septembre 2006 by Miguel Lorente

Adaptation to increased water deficits : 2 - training system

- Long traditrion to cultivate vines in meditarranean regions : gobelet trained « bushvines »
- Low leaf area and low yield
- High quality wines can be produced with less than 400 mm annual rainfall and without irrigation

Adaptation to increased water deficits : 3 – Soil water holding capacity

- Avoid planting vines on soils with low Soil Water Holding Capacity
- Assess SWHC before plantation

Example: vineyard on hard Urgonien limestone in la Clape

Adaptation to increased water deficits : 4 - Irrigation

- With irrigation economically sustainable yields can be reached in dry areas
- But: water ressources are declining
- Irrigation can induce salinity problems
- Some blocks can never be irrigated

Drought in Californie

Salt stress in irrigated vines

Which priorities for water use?

 Is it reasonable to use 100 to 150 liter of water to produce 1 bottle of wine

Long tradition of dry farmed vineyards in mediterranean regions

Marocco

Greece

It is possible to produce very high quality wines in dry regions with dry farming

Henschke's Hill of Grace

Economic equation

- With increased drought, yield decreases

- Jereas Joreas Jorease Jorease production Decrease production cost (for able to harvest gobelet trained vine harvester able to harvest pevelopping a mechanical harvester able to harvest bevelopping a mechanical harvest bevelopping a harvest bevelopping

Conclusion

- Increased temperatures : advanced phenology and higher temperatures during grape ripening
- Delay maturity
- Plant material is the most promising option
- Increased drought induces reduction in yield
- Three options :
 - Increase yield through irrigation
 - Decrease production costs by mechanization of gobelet vines
 - The use of drought resistant plant material is a cheap and evironmentally friendly option