Predicting the effect of drought and climate change on the composition and extractibility of flavonoids in Cabernet sauvignon

James Campbell – California State University Fresno

Thibaut Scholasch – Fruition Sciences SAS

James A. Kennedy – Constellation Brands

58 Irrigated Vineyard Sites located across 9 AVA in Napa valley

Experimental Layout

Smart point design

WATER MONITORING 2 Sap flow sensors Connected to the web +

FRUIT MONITORING 50 vines (5-6 dates) +

Yield <6 tons/Ha

2 vines equipped with sap flow sensor

Sap Flow Sensor (2 vines per plot)

Berry Analysis Methods

Molar Absorbance

Tannin Activity

The concept of measuring Tannin Activity in relation to wine astringency quality is new: **Barak and Kennedy, 2013; Revelette et al., 2014; Yacco et al., 2016**

Analytically related to the potential for interaction with salivary protein (astringency). Increase in interaction is associated with increased potential for drying tannins.

Tannin Activity is related to:

- 1) Tannin structure variation (grape and wine)
- 2) Anecdotal perception of red wine astringency

One goal of the study: "Determine utility of tannin activity measurement in the vineyard"

Results

Comparison of Two Sites Thermal Time Profile

Comparison of Two Sites Water Deficit Via Sap Flow

All sites -Water Deficit Index

(Average post veraison period)

57 sites

Primary Metabolites and Berry Size

Polyphenols

Total anthocyanin concentration

Tannin

- Concentration (mg/berry)
- Mol fraction of prodelphinidin
- Activity

Partial Extracts – Anthocyanins Concentration (mg/berry)

No relation was found with WDI

- Partial Extracts -Total Tannin Concentration (mg/berry)

Question #2:

Why most blocks show a leveling of tannin extraction

while few blocks show a spike in tannin concentration towards the end of maturity?

- Partial Extracts -

Tannin Concentration (mg/berry) at "leveling" Phase

(average value over last 3 sets)

Relation with WDI under investigation

Tannin Composition Changes SITE 1 (low water deficit)

Total tannins concentration declines rapidly and levels off near 0.4 mg/berry

Tannin Composition Changes Site 2 (High water deficit)

Total tannins concentration declines more gradually, levels off near 0.2 mg/berry and increases near the end

Take home on Tannin Composition Changes

- As seed lignifies, extraction of seed derived tannins decreases.
- ➔a decline in the total tannin concentration with a relatively stable concentration following the decline.
- Although there is a decrease, we see an **increase in prodelphinidin** = a tannin subunit strictly synthesized in the skin of the grape.
- → suggests that although the concentration being extracted is lower, there is more skin-derived tannin within that concentration.

- Partial Extracts – Tannin Activity

As tannin activity decreases, tannins are considered to be less "drying" Once fruit is harvested and fermented, activity again increases as apparent tannin size increases **This gives wine astringency.**

- Partial Extracts – Tannin Activity

Relation with WDI under investigation

Next steps

- Analyzing the data set we try to address the following questions
 - Water deficit index vs. GDD :
 - What is their relative impact on polyphenols extractability kinetics and end of season values?
 - Effect on Hang time and maturation length on polyphenol extraction and last set variation
 - Why do most blocks show a late-season leveling in tannin extraction?
 - Why do a few blocks show a late-season spike in tannin concentration?
 - Effect of seed

thanks

