HOW WILL CLIMATE CHANGE AFFECT VINE NUTRIOTIONAL STATUS IN DIFFERENT SOILS?

U. Leibar, I. Pascual, A. Aizpurua, F. Morales and O. Unamunzaga

EKONOMIAREN GARAPEN ETA LEHIAKORTASUN SAILA EPARTAMENTO DE DESARROLLO ECONOMICO Y COMPETITIVIDAD

INTRODUCTION

EKONOMIAREN GARAPEN ETA LEHIAKORTASUN SAILA DEPARTAMENTO DE DESARROLLO ECONOMICO Y COMPETITIVIDAD

INTRODUCTION

because it influences grapevine growth, berry composition, as well as must and wine quality

OBJECTIVE

- The aim of this work was to evaluate the effect of...
 - Climate change (increased CO₂, higher temperature and lower relative humidity)
 - Soil texture
 - Water stress
- ...on the nutritional status and must K concentration of grapevine (Vitis vinifera L.) cv. Tempranillo

 A greenhouse experiment → potted, own-rooted fruit-bearing cuttings.

EXPERIMENTAL DESIGN

	Greenhouse		Soil texture	Water stress	
	Climate change : 700 ppm CO ₂ 28/18ºC 33/53% RH day/night		100% soil	Well irrigated	
			(40% clay)	Water deficit	
			Mixed soil	Well irrigated	
			50% soil + 50% sand	Water deficit	
			Mixed soil (Sandy)	Well irrigated	
			25% soil + 75% sand	Water deficit	
	Current conditions: 375 ppm CO ₂ 24/14ºC 45/65% RH day/night		100% soil	Well irrigated	
			(40% clay)	Water deficit	
			Mixed soil	Well irrigated	
			50% soil + 50% sand	Water deficit	
		Mixed soil (Sandy)		Well irrigated	
			25% soil + 75% sand	Water deficit	

-Typical Rioja clay Soil 100% \rightarrow 40% clay content, pH 8,84

-Water stress

- Well-irrigated (WI): 20-35% of soil water content (Field Capacity)
- Water deficit (WD): approx. 10% of soil water content → 40% less than WI
- -12 treatments x 9 plants/treatment = 108 plants

- Leaf blade samples at veraison and maturity
 - N, K, Mg, Na, Ca, Mn, Fe, Zn ...
- Qualitative parameters
 - Skin/Pulp ratio
 - Must K
 - Anthocyanins content
 - Polyphenol content
 - Colour intensity

neiker

EUSKO JAURLARITZA GOBIERNO VASCO EKONOMIAREN GARAPEN ETA LEHIAKORTASUN SAILA DEPARTAMENTO DE DESARROLLA ECONOMICO Y COMPETITIVIDAD

Statistical analysis

- 3-way ANOVA procedure
- Completely randomized design
- No interaction between factors

RESULTS AND DISCUSSION

- On the whole, there was not any significant interaction among factors
- CLIMATE CONDITIONS
 - Lower nutrition concentration in leaf than those grown under current conditions

Varaison	N	K	Ca	Mg	Na	Fe	Mn	Zn
Veraison	%	%	%	%	mg kg ⁻¹	$mg kg^{-1}$	mg kg⁻¹	$mg kg^{-1}$
CO ₂ -T-RH regime								
Curr	$2.77A\pm0.06$	0.71 ± 0.04	$2.41A\pm0.09$	0.42 ± 0.02	107.8 ± 6.6	58.1 ± 2.1	123.4 ± 6.4	33.8 ± 2.6
CC	$2.47B \pm 0.07$	0.70 ± 0.03	$2.13B \pm 0.09$	0.39 ± 0.02	101.8 ± 6.5	52.1 ± 2.4	107.0 ± 6.4	27.6 ± 2.5
	**	ns	*	ns	ns	INT	INT	ns
	N	K	Ca	Mg	Na	Fe	Mn	Zn
Full maturity	%	%	%	%	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
CO ₂ -T-RH regime						1	1.	
Curr	$2.60A \pm 0.07$	0.73 ± 0.04	2.44 ± 0.09	0.38 ± 0.03	83.4 ± 4.2	62.6 ± 3.0	110.3 ± 6.2	<mark>47.3</mark> A ± 3.6
CC	$2.25B \pm 0.05$	0.65 ± 0.03	2.55 ± 0.10	0.43 ± 0.03	83.5 ± 5.4	55.51±2.2	103.7 ± 5.7	28.6B ± 1.7
	***	ns	ns	ns	ns	ns	ns	***

RESULTS AND DISCUSSION

• WATER DEFICIT

 Leaf blades from water-stressed plants had higher concentration of the nutrients compared with those well-watered.

Varaison	N	K	Ca	Mg	Na	Fe	Mn	Zn
veraison	%	%	%	%	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
Water availability (WA)								
WW	2.57 ± 0.06	0.72 ± 0.03	2.17 ± 0.10	0.39 ± 0.01	$86.6b\pm4.9$	51.6 ± 2.5	107.0 ± 7.1	28.8 ± 2.8
WD	2.70 ± 0.08	0.69 ± 0.03	2.38 ± 0.08	0.42 ± 0.03	126.6a ± 5.8	59.2 ± 1.7	124.8 ± 5.1	32.8 ± 2.1
	ns	ns	ns	ns	***	INT	INT	ns
E-11 maturity	Ν	K	Ca	Mg	Na	Fe	Mn	Zn
run maturity	%	%	%	%	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
Water availability (WA)								
WW	2.40 ± 0.07	$0.74a\pm0.03$	2.42 ± 0.10	0.41 ± 0.03	77.2 ± 4.3	57.3 ± 2.7	$93.2b \pm 5.9$	37.3 ± 3.3
WD	2.44 ± 0.07	$0.63b \pm 0.04$	2.58 ± 0.09	0.41 ± 0.03	90.3 ± 5.2	60.6 ± 2.6	121.5a ± 4.8	<mark>37.9</mark> ± 3.1
	ns	*	ns	ns	ns	ns	***	ns

- However, K concentration was higher at full maturity in the well-irrigated treatment.

RESULTS AND DISCUSSION

• SOIL TEXTURE

- Soil texture in general did not affect plant nutrition, but...
- Berries from plants grown under more clayey soil had a higher must K

	$K (g kg^{-1})$
Water availability (WA)	
WW	2.40 ± 0.04 a
WD	$2.26 \pm 0.03 \text{ b}$
Soil texture (ST)	
41% clay	2.42 ± 0.05 a
19% clay	2.33 ± 0.05 ab
8% clay	$2.25 \pm 0.03 \text{ b}$

CONCLUSION

- Climate change resulted in nutrients reduction.
- Future expected water deficit altered grape nutritional status.
- Soil texture influenced K concentration, where higher concentration was observed in more clayey soils.
- This must K concentration increase could be a problem in terms of wine acidity loss, especially since one of the adverse effects of climate change will also be a lower acidity.

ounamunzaga@neiker.eus

