Nested scale approach to characterizing the climate contribution to vineyard terroirs in the context of climate change

R. Le Roux¹, E. Neethling¹², L. de Rességuier³, G. Barbeau², C.van Leeuwen³, A.Sturman⁴, M.Katurji⁴,

P. Zawar-Reza⁴, H. Quénol¹

- Climate change scenarios show a rise of mean temperature during the XXI Century
- Global climate models include the influence of both natural and anthropogenic phenomena
- They are used to estimate future climate everywhere on the globe at low resolution (~300 km)

- All of France is concerned by the observed warming trend
- More significant warming is expected in the eastern parts of the country

2.6

- Climate, especially temperature, has a important impact on grapevine behaviour, through its influence on:
 - Grapevine growth and development (phenological stages, ...)
 - Climatic hazards (heat waves, spring frost, ...)
 - Wine characteristics (alcohol, acidity, ...)
- Several bioclimatic indexes are based on temperature, including:
 - Winkler index
 - Huglin index

- Climate is a part of terroir and each vineyard has its own specific temperature distribution
- Local climate is a result of multiple interactions between climate processes of varying scale: global, regional and local
- At vineyard scale, temperature is influenced by local topography (elevation, slope and aspect)

- Differents kinds of model exist to simulate climate at different scales
- Dynamical regional-scale models are based on fundamental atmospheric equations
- Several nested grids can be used to downscale global climate model predictions to a finer resolution

Temperature map at kilometre resolution

- Statistical models are also available to simulate climate at these different scales
- Statistical local-scale models are based on empirical relationships identified between predictor and predicted variables
- In this case, the model is based on the observed relationship between temperature and environmental variables (topography, spatial correlation)

 Using these different approaches to modeling and predicting climate change, a key research question is:

How can we evaluate and simulate the impact of climate change at the scale of a vineyard or a viticultural terroir?

- Important steps include:
 - Integration of measurements and spatial modeling adapted to the local scale
 - Comparison with regional analysis
 - Comparison with climate change scenarios

- Study sites: two sites in the wine growing region of the Loire Valley, France
- Equipment: 60 temperature data loggers
- Set up in 2012 Campbell Wes ata locoers (T*C 92 87 81 76 70 63 56 50 45 40 35 29 23 Coteaux du layon Saumur Champigny

Source : Quénol (2014)

- Study site: Libournais-Est, France
- Equipment: 90 temperature data loggers
- Set up in 2012
- Set up in relation to topography (slope, elevation, aspect, etc.)

Regional modeling over the Bordeaux vineyard area using WRF (2014)

- Correlation with Bordeaux weather station shows that WRF provides a good representation of temperature
- WRF allows study of climate in a regional context
- Even if WRF was not developed for the same purpose as climate prediction models, they are based on the same fundamental atmospheric equations

- Using data from the data loggers, a statistical model was set up to evaluate local temperature variability over the study sites
- Maps of daily temperatures were produced (Tmin, Tmax)
- Bioclimatic indices were computed and mapped (Huglin, Winkler)
- Variability of these indexes is compared to regional scale analysis from a regional model (WRF) at 3 km resolution

• Winkler index mapping using statistical modeling (Support vector Regression)

 Variability of Winkler index range is important in spatial and temporal aspect (millesime effect)

_		2012	2013	2014
	Model/Indexes	SVR	SVR	SVR
R	MSE (degree-day)	32.59	33.11	34.93
Ν	MAE (degree-day)	25.37	25.37	28.59
	RMSE-MAE	7.22	7.74	6.34
Сс	peff. of correlation	0.91	0.84	0.84

- Huglin index mapping using statistical modeling (Support vector Regression)
- SVR modeling seems to be able to produce accurate results on a smaller site under a different regional climate

		-	
	2013	2014	2015
Model/Indexes	SVR	SVR	SVR
RMSE (degree -days)	20,09	18,61	26,92
MAE (degree -days)	15,92	15,71	22,57
RMSE - MAE	4,17	2,90	4,35
Coeff. of correlation	0,84	0,91	0,94

Difference between

huglin value (Degree-Days °C) 1793

(in Degree-days)

1819

• 1 • 25

2013

Difference from mean temperature of the Bordeaux wine growing area for Winkler index 2014 (in degree-day)

- Winkler Index variability could could be similar in magnitude at regional and at local scale
- Although WRF reproduced the regional climate well, it was not able to accurately represent the local temperature variability of the Saint-Emilion area (at 1 km)

Summary and Conclusions

- Future climate projections at the local scale
 - Global climate prediction models do not accurately reproduce the local varibility of temperatures

 Coteaux du layon site and Saumur Champigny site are only represented by one grid point

> Only 4 grid points represent the Libournais-Est area with a Winkler index range of 50 degreedays

Summary and Conclusions

Summary and Conclusions

Perspectives

- Understanding the relationship between climatic scales is essential to understanding local climate evolution in the future.
- Dowsncaling of dynamical model output is a way to investigate local climate from the regional scale
- Investigating the effect of weather patterns across different scales helps to improve understanding of the impact of synoptic situations at the vineyard scale
- Adapting future scenarios of climate change to the vineyard scale should allow mitigation of impacts of climate change on the wine industry

Thank you all for your attention

ClimWine Symposium

April, 2016

Université Rennes 2 - Place du Recteur Henri Le Moal - 35043 Rennes Cedex

contact@adviclim.eu · www.adviclim.eu

ADVICLIM receives founds from the European Life + 2013 Program

