The State of the Climate: Trends, Projections, and Relationships to Viticulture and Wine Production

Gregory V. Jones
<u>Director</u>: Business, Communication and the Environment
<u>Professor</u>: Environmental Science and Policy **SQ** Southern **OREGON**

Talk Outline

- Changing Wine Map
- State of the Climate
- An Ideal Climate for Viticulture and Wine?
- Meta-Analysis of Climate Change Influences
- Recent Research and Future Changes
- Summary

A New World of Wine: How the Viticultural Map is Changing

Change Factors

- National to international economics
- Growing demand, changing demographics
- New markets, new consumers, new styles
- New purchasing trends
- Changes in the tastes of wine writers/raters
- Production and movement of bulk wine
- Organic, biodynamic production and sales
- Pioneers looking for 'fringe' or new areas
- Climate

State of the Climate

Land & Ocean Temperature Percentiles Jan–Dec 2015

NOAA's National Centers for Environmental Information

Data Source: GHCN-M version 3.3.0 & ERSST version 4.0.0

Anomaly ("F)

Monthly Global Average Temperature in February

February 2016 was the warmest month ever recorded The five largest monthly global warm anomalies have all occurred within the past five months, topped by February 2016

Observed SST Changes 1870-2015

Arctic Sea Ice Extent

Tropics to Poles Temperature Gradient

2007

Increased Weather/Climate Variability

Arctic amplification has produced a slower jet stream, with more amplified north-south waves, more extreme weather and greater swings in climate conditions from year to year, season to season, and month to month. Some indication of similar changes in the Southern Hemisphere

Emissions have slowed, but not enough ...

Year

An Ideal Climate for Viticulture and Wine Production?

Meta-Analysis of Observed Climate Change Influences

Warmer dormant periods reducing chilling and cold hardiness, but winter freezes still occur

driving earlier

growth, but

frosts still

occur

variability and heat stress in

many regions

Lower diurnal temperature ranges in many regions, fruit ripens too early, sugar ripe, but not flavor/aroma ... ripeness clocks out of sync

Phenology has shown shifts to:

- Earlier occurrences (5-10 days/1°C), and
- Compressed phases (5-20 days on average)

- Altered/new disease/pest timing and severity
- Increased drought frequency and severity
- Changes in soil fertility and erosion
- Water availability and timing of irrigation

Recent Research in Europe

Temperature, Drought and Winegrape Harvests

May-June-July correlations with GHD

Cook and Wolkovich (2016) Nature Climate Change

Cook and Wolkovich (2016) Nature Climate Change

Historic vs Future Temperature Distributions in the Western US

Growing Season Temperature Distribution Changes in the Western US - Historic

Each Standard Deviation is equivalent to +/- 1.1°C

Growing Season Temperature Distribution Changes in the Western US - Recent

Each Standard Deviation is equivalent to +/- 1.1°C

Summary

Global Climate Summary

- The planet is warmer than at any time in our recorded past
- The past 15 years has produced conditions expected to be on average by 2050, or sooner
- Oceans are absorbing much of the heat, disrupting biogeochemistry cycling and climate feedbacks as we know them
- Extremes in temperature and precipitation, along with drought events, have increased in severity and frequency

Global Viticulture/Wine Summary

- Altered phenological timing (globally 5-10 days per 1°C) and intervals (5-20 days overall)
- Altered ripening profiles (challenges in managing timing of sugar, acid, flavor and phenolic development)
- New and/or altered disease and/or pest timing and severity
- Altered irrigation needs, especially with drying summers and higher Tmax
- Increasing need for management and production adaptations

Risk and Adaptive Capacity/Strategies

Much research and innovation is needed in both <u>physical</u> and <u>social</u> frameworks to enhance the wine producer community's understanding of:

- Impacts & Uncertainties
- Potential Opportunities
- Need & Options for Adaptation Strategies

Ultimately Growers/Producers need to:

- Understand/Maximize their Adaptive Capacity
- Reduce Exposure/Risk
- Build Resilience in their Operations

Critically ... governments need to close the Policy/Decision Relevance Gap as soon as possible to make our jobs easier!

Thank You!

Gregory V. Jones <u>Director</u>: Business, Communication and the Environment <u>Professor</u>: Environmental Science and Policy

11th International Terroir Congress

Willamette Valley, Oregon July 10-14, 2016

July 10-14 in the heart of the Willamette Valley

For more information terroircongress.org or email terroir@sou.edu